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Abstract. The present paper provides a full description of a software implementation of a system 

for statistical distributions. Such a system is almost indispensable in many simulation applications 

where the factors incorporated adhere to a specific non-normal distribution. The realization is de-

veloped as a software library that can be integrated in different other applications. There is also 

the possibility for additional theoretical distribution types to be added. 
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1 Purpose 

The main goal of the statistical distributions identification software modules is an automatic deter-

mination of theoretical distribution type and its parameters for a given data sample. This is done by a 

software module developed by the authors of the paper hereto proposed and which is currently being 

used in Monte Carlo simulations with generation of future data with distribution and parameters ac-

cording to the available historical data (Robert, 1999). Thus, the most suitable modeling of empirical 

histogram is achieved by exact reproduction of the identified theoretical distribution type. 

 The existing software products have the disadvantage of being mainly mathematical general pur-

pose systems (Ricci, 2005). The system presented here is developed as a library in Java programming 

language and as such it can be integrated in different types of other software systems that can call its 

functionalities either directly or as services (Josuttis, 2007). 

2 Implementation 

The input data for the software module involves the data sample whose distribution is to be deter-

mined and settings like a list of standard distributions types that will be checked against the selected 

data sample. Examples of such distribution types are: Beta, Cauchy, Student, Weibull, etc. (Krishna-

moorthy, 2006). The result of the module as output data is identified distribution type that best fits the 

presented data sample and the specific distribution parameters. Computed, additionally, is the numeri-

cal distance between the histograms of the empirical data sample and theoretical distributions, so that 

the sample can be assigned to some distribution type but taking into account the observations or meas-

urements in the sample, another similar distribution types might also to be  perceived. 

Some of the most often used statistical distribution is the Normal distribution and often data gener-

ation in different simulation tasks is done using this distribution type. However, this assumption is not 

always correct since the best fitting theoretical distributions are likely to be skewed which, in turn, 

leads to the underestimation of the simulation accuracy. To improve the simulation accuracy the best 

fitting distribution identification must be done by identification and usage of non-normal distributions. 

Presented in fig.1 is an example of distribution where a given confidence level must be found and the 

distribution type in case of simulation is very important. 
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Fig. 1 An example of normal distribution with changes in its confidence levels when other distribution type is in 

use. 

 

The simulation accuracy is even more important when the data sample is ordered time series and 

correlations between a set of such series are taken into account. Situation like this arises in value-at-

risk (VaR) estimation by Monte Carlo simulation with numerous factors exerting an enormous influ-

ence over the result (Mun, 2006). Correct distribution type that can be non-normal significantly im-

proves the accuracy of the results. 

In order to identify the most suitable distribution type, the following steps are performed: 

1) The histogram of the empirical data sample is calculated; 

2) Theoretical probability density function is computed in the following way: 

2.1) First the specific distribution parameters are estimated from the data sample; 

2.2) The theoretical distribution is built using estimated parameters; 

2.3) The distance between the empirical histogram and theoretical density function is measured. 

This distance is largely determined by the chosen criterion which, in the present case, is the Euclidean 

distance between the distribution histogram bins. 

3) The selected theoretical distribution types are ordered ascending according to the distances the 

best fitting distribution is considered and stored for later usage in the simulation. 

Illustrated in fig. 2 is an example of a non-normal distribution that fits the sample data histogram 

better than the normal distribution. 

 

Fig. 2 Comparison of normal and non-normal distributions to an empirical histogram. 

 

  

 

  
Required confidence level  

  

Q   

Expected value 

 

This distance 

changes with differ-

ent distributions 

Normal distribution 
Non-normal distribution 

better fits the histogram of 

the data sample 

https://doi.org/10.29114/ajtuv.vol5.iss1.226


 

 

https://doi.org/10.29114/ajtuv.vol5.iss1.226  

Vol.5 Issue 1 (2021)  

ISSN 2603-316X (Online) 
Published:   2021-06-09  

 

 Page | 21  

 

. 

 

 

Goodness-of-fit test are designed to determine whether a given data sample follows a specific dis-

tribution type. Employed, to this effect, is a technique like “chi squared”, Anderson-Darling, Kolmo-

gorov-Smirnov, etc. (Cameron, 1998; Draper, 1998). Here the best fitting distribution type to a given 

sample data is determined by comparing the histogram of the sample data (empirical histogram) and 

the probability density function (PDF) values (theoretical histogram) for all the selected theoretical 

distribution types – fig. 3. The distance is calculated as average squared distance between the histo-

gram bin frequencies of empirical and theoretical histograms: 
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where k is the number of the histogram bins; Oi is the value of the theoretical PDF corresponding to 

the bin i from the data sample histogram; Ei is the number of values in bin i from the data sample his-

togram. 

 

 

Fig. 3 Comparing sample data histogram with the theoretical distribution histogram. 

The suggested technique can be considered as modified “chi squared” goodness-of-fit test 

(Bury, 1999).  Accordingly, the empirical data sample histogram should be calculated as well as the 

theoretical distribution histograms. The empirical histogram is obtained from the available sample data 

and the theoretical histogram is calculated by the Cumulative Distribution Function (CDF) formula for 

every chosen theoretical distribution type. Therefore, for all the selected theoretical distribution types, 

the distribution parameters should be preliminary estimated in order for the CDF formula to be ap-

plied. Table 1 lists the theoretical distribution types built upon in our module along with their parame-

ters (Balakrishnan, 2003). 

The distribution parameters can be classified into two categories: 

• Specific parameters related to the distribution. For each distribution type specific parameters are 

estimated using different techniques according to their computational effectiveness. 

• Parameters for sample transformation. It is possible for the sample data values to be such so that 

they do not allow for the distribution formulas to be defined. In such a case the sample is trans-

formed by shift and/or scale. 
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Table 1. Distribution parameters and transformation. 

Distribution 
Specific parameters Transformation 

First parameper Second parameter Shift Scale 

Beta α β yes yes 

Cauchy x0 γ no no 

Exponential λ N/A yes no 

Gumbel μ β no no 

Gamma k θ yes no 

Inverse Normal μ λ yes no 

Log Normal m σ yes no 

Logistic μ s no no 

Maxwell-Boltzmann a N/A yes no 

Normal μ σ yes no 

Pareto xm α no no 

Pearson type VII m α no no 

Rayleigh σ N/A yes no 

Student ν N/A yes yes 

Weibull λ k yes no 

 

 

When all the parameters are estimated, the theoretical histogram is calculated. In this regard, use is 

made of the known CDF (Vallentin, 2011): 
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where P is the probability for the variable X to contain a value that is smaller than or equal to x. 

The probability density function (PDF) considered as a theoretical histogram is obtained from the 

distribution with known CDF – fig. 4. 
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where Fx(x) is the CDF of the selected distribution. 

 

 

Fig. 4 Probability density function of a theoretical distribution represented as a histogram with bins. 
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bins. The number of values in a given bin determines the bins height. Obtained, thereby, is the empiri-
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both sides of the border. The number of bins is chosen by a setting in the module and it can be either 

fixed or varying according to the size of the sample data. 

For validation purposes a sample generator is also developed which generates values with a chosen 

distribution type. This is done by generating values with equal probability in interval from 0 to 1 either 

random or equally distanced one from the other. 

3 Generating values in the simulation stage 

In the simulation stage, the correlated factors are identified and for each factor the respective distri-

bution type is identified and its CDF is saved. Generated, then, for every such factor is a huge number 

of values obeying the corresponding best fitting distribution by means of the CDF of the identified 

distribution. This allows for the accuracy to be significantly improved compared to the hypothesis that 

all factors are normally distributed. The process of sample values generation in the simulation stage 

using stored CDF is shown in fig. 5. 

  

Fig. 5 Using the best fitting distribution type in the process of simulation. 

 

Keeping the CDF of the best fitting distribution enables its use in the simulation stage. As the CDF 

values for the bins are sorted ascending, the probability is transformed into a sample value by a binary 

search (Sedgewick, 1998) in the CDF line. When the bin is established, the exact value is calculated 

by interpolation between its left and right border. 

4 Conclusion 

The developed software module was tested with both randomly generated sample data with differ-

ent size and by uniformly generated values. Sometimes the suggested distribution type in not correctly 

identified as this happens more often if the data sample is relatively small. Such phenomenon occurs 

in the other known statistical distribution identification systems as well. The module is usable and 

integrated in other systems for Monte Carlo simulation even more when the distribution type is im-

portant for accuracy improvement. Identified, currently, are 15 theoretical distribution types but in 

view of the scalable software architecture of the module supporting various practical design patterns, 

other theoretical distribution types can be added as well. The developed software module performs: 
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• Identification of the best fitting theoretical distribution and the values of its parameters; 

• Comparison of empirical and theoretical histograms; 

• Implementation of the best distribution for simulation purposes. 

In fig. 6 part of the graphical user interface of the prototype system is shown, with built-in software 

library, where the generated empirical and several theoretical histograms can be seen.  

 

 

Fig. 6 Realized prototype using the distribution type identification software module 
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