

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 34

Genetic algorithm-based multi-objective optimization model for

software bugs prediction

Bakre Oluseye Musinat1, Femi Temitope Johnson2, Olusegun Folorunso2, Ihekwoaba Ezinne3

1 – Department of Computer Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
2 – Department of Computer Science, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.

3 –Computer Science Department, Federal College of Education (Technical), Akoka, Lagos State, Nigeria.

Corresponding author contact: femijohnson123@hotmail.com

Abstract.

The accuracy and reliability of softwares are critical factors for consideration in the operation of

any electronic or computing device. Although, there exist several conventional methods of software

bugs prediction which depend solely on static code metrics without syntactic structures or semantic

information of programs which are more appropriate for developing accurate predictive models. In

this paper, software bugs are predicted using a Genetic Algorithm (GA)-based multi-objective opti-

mization model implemented in MATLAB on the National Aeronautics and Space Administration

(NASA) dataset comprising thirty-eight distinct factors reduced to six (6) major factors via the use

of the Principal Component Analysis (PCA) algorithm with SPSS, after which a linear regression

equation was derived. The developed GA- based multi-objective optimization model was well-tried

and tested. The accuracy and sensitivity level were also analyzed for successful bug detection. The

results for optimal values ranging from 95% to 97% were recorded at an average accuracy of 96.4%

derived through MATLAB-implemented measures of critical similarities. The research findings re-

veal that the model hereto proposed will provide an effective solution to the problem of predicting

buggy software in general circulation.

Keywords: Software bugs, Genetic Algorithm, Optimization, Prediction, Machine learning

1 Introduction

Software bugs are usually known for the adverse effects they have on computer programs and de-

vices, and for causing frequent issues of hardware malfunction. Predicting defective software modules

has been a great challenge (Catal & Diri, 2009) although it helps detect defect-prone modules (Kim et

al., 2011), which play critical roles in software quality assurance.

 A software bug is simply an error or fault causing a program to generate wrong results or function

abnormally. Several causes of bugs have been associated with errors in source program designs, compi-

lation, and operating systems malfunctions with great glitches of related disasters (Gupta, Dharmendra,

& Kavita, 2017). A high rate of death was recorded in 1980 due to code bugs in the Therac-25 radiation

therapy system. Also, historical records of the events in 1994, detailing the reason for the Chinook Royal

Air Force helicopter smash into the Kintyre Mall has been triggered by a software error in the engine

control computer of the aircraft thereby killing twenty-nine (Simon, 2012). Similarly, The European

Space Agency's $1 billion prototype Ariane 5 rocket after a minute launch was also destroyed due to the

presence of bugs in its on-board guidance computer program (Okutan & Yıldız, 2014).

Nonetheless, present-day software defects prediction entails the use of machine learning (Bavisi,

Mehta, & Lopes, 2014) with historical data in repositories (Catal et al., 2009). The outcome from this

will help developers gain stability and reliability of apps to find and repair possible defects in softwares.

Cross-project and within-project software defect prediction are common categories of software predic-

tion processes (Rahman, Posnett & Devanbu, 2012), which could be adopted, either one or both, for

software bug prediction depending on the homogeneity of the sourced data to the target data (Zhou et

al., 2018).

The first step towards the process of debugging through machine learning is the collection of in-

stances from software repositories such as problem tracking systems, version control systems, or e-mail

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 35

repositories for the development of a prediction model. Each instance could be a source code file con-

taining class, functions or methods, device or software package for classifying software as either defec-

tive or not non-defective (Naidu & Geethanjali, 2013). Software are considered defective when they

contain several bugs interfering with their functionality (Shepperd, Bowes & Hall, 2014), such as caus-

ing a functional system to crash or stop responding to users' requests and commands. Security challeng-

ing bugs may provide malicious users access and unauthorized privileges to an organization's system

(Akmel, Birihanu & Siraj, 2017). Pre-processing machine learning techniques (feature selection, data

normalization, and noise reduction) could also be performed on the instances with labels and metrics

(Shivaji et al., 2012; Kim et al., 2011). For accurate prediction, the model must be well-tried with lots

of training instance samples and tested before being deployed for software bugs detection in real-life

sceneries.

Adopted in the present paper, is an adaptive heuristic machine learning search (Genetic Algorithm),

founded on the same principle as the natural fitness selection of genes, for a multi-variable input selec-

tion for a more optimized loss (parametric features) and cost (Line numbers) functions in bugs' predic-

tion. The Genetic Algorithm (GA) model has been used extensively to solve software testing problems

involving classification, optimization and regression. The remaining section of this paper is structured

as follows: Section 2 commences with a brief introduction to the Genetic Algorithm, its operational

stages towards software bugs prediction with optimization methods and Section 3 provides the method-

ology starting with data description and selection, preprocessing techniques and optimization methods.

The implementation of the Genetic Algorithm-based multi-objective optimized model and the results

are demonstrated in Section 4. Highlighted, lastly, in Section 5, are the conclusions reached and the

future directions of research.

2 Genetic Algorithm for optimization in software bugs prediction.

The genetic algorithm (GA) developed by John Holland in 1960 (Bies, et al., 2006), is a metaheuristic

method centered on the idea of Darwin's theory of evolution. This algorithm is motivated by biological

operators (mutation, crossover and selection) for the production of quality solutions towards solving

optimization and search problems. G.A process begins with the population of randomly generated can-

didates (phenotypes) with a highly distinguishable set of properties known as chromosomes which can

be mutated or altered. Each phenotype is usually represented as binary strings of 0s and 1s regarded as

the first generation, but other encodings are possible as well (Cha at al., 2009).

The initial generation undergoes an iterative process where the fitness of each candidate in the gen-

eration is evaluated. The candidate fitness is further determined by the objective function(s) provided

for the problem under optimization. Fitted candidates are stochastically selected with genes modified to

form a new generation which is used in the next iteration until a satisfactory fitness level is reached or

number. Genetic representation of the solution domain and formulation of fitness function for its eval-

uation are the two major conditions required in the implementation of the GA (Doval, Mancoridis &

Mitchell, 1999). Once these are clearly defined, GA proceeds to initialize a population of solutions,

improves it through repetitive application of the mutation, crossover, inversion and selection operators.

The stages are further summarized in the sub-sections below.

a. Initialization

The initialization output is a collection of randomly generated candidates possessing a wide range of

possible solutions for the surveyed optimization problem. Additionally, the population size itself is

closely related to the nature of the problem being solved and the availability of candidates for the solu-

tion. The resulting solutions, as is often the case, are concealed in areas where optimal solutions are

likely to be found (Challagulla et al., 2008).

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 36

b. Selection

The selection of candidates is determined by the fitness function with the main aim of rating the

fitness value of each solution and preferentially selecting the best solutions after each successful itera-

tion (Jaspree, 2011). Candidates are represented in an array of bits with values such as zero and one.

Although fitness function is always problem-dependent, it also measures the quality of the represented

solution. Defining fitness functions may be quite hard in some problems (Singh & Chug, 2017), but the

use of simulation tools or interactive genetic algorithms will be of great assistance.

c. Genetic mutation and operations

For a set of new candidates (offsprings) marking the second generation to be created, there must be

an interaction between the parents. Similarly, for each new solution, a combination of genetic operations

in terms of cross-over and mutation is performed on the initial candidates (parents) selected from the

pool of generated solutions (Haznedar & Kalinli, 2016). The new solution (offsprings) typically shares

many characteristics with the parents, thus, making them more suitable since only the best organisms

from the first and subsequent generations are selected for breeding to yield the best optimal solution.

New parents are also selected for each new child and the process continues until a new population of

solutions of appropriate size with increased state of fitness for the population is generated. Other heu-

ristics can be adopted for a faster and more robust operation (Cha & Tappert, 2009)

d. Termination conditions.

Termination conditions are specified for the successive generations of offspring. Possible conditions

for the termination include one or more of these factors:

i.Deriving optimal solution satisfying the given conditions

ii.Reaching the fixed number of generations

iii.Keeping within the allocated budgets (memory and computational time)

iv.Manual inspection and reaching a point where no better results could be generated

2.1 Multi Objective Optimization Algorithms

The process of selecting the best elements (with consideration to certain criteria) from given alterna-

tives is termed optimization. More generally, it involves finding "best available" values attributes which

satisfy some objective functions for a given problem (Zavala et al., 2014). It is a commonly used term

not only in computer science, mathematics and engineering but also in our daily life ranging from budg-

eting our finances, planning schedules or trips to determining the number of items.

The task of determining a single objective function for determining the best solution to an optimiza-

tion problem is known as single-objective optimization (Suman, 2004) but when two or more functions

are involved in seeking one or more optimum solutions to a problem, such is regarded as a multi-objec-

tive optimization problem. Naturally, a trade-off usually exists between different goals in real life as

there is no singular optimal approach to multi-objective optimization problems (Jaddan et al., 2008). So,

when more than one objective function is involved in an optimization problem, the task of seeking one

or more optimal solutions is known as multi-objective optimization.

Commonly used approaches in multi-objective algorithms are such that the objective functions are

merged using a weighted sum method (scalarizing) to generate a single composite function. The Pareto

optimal solution seems ideal for this approach but with a limitation for not being able to generate all

accurate points to a scalarized problem. Secondly, all but one target could be moved to a constrained

condition with the aim of getting a set of Pareto Optimal points (Chen & Guestrin, 2016) with the same

process repeated for all combinations of values. Another approach is to select the entire optimal solution

set at once, which may be quite challenging to achieve.

Better results are obtained with heuristic algorithms due to their possession of higher-level techniques

or methods aimed at finding precise solutions to complex optimization problems with no available pre-

cise methods(Zavala et al., 2014). Continuous increase in the acceptance rate of heuristic algorithms is

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 37

due to their adaptability for use in both combinatorial and continuous functions optimization problems

and their ability to converge multiple generated solutions to an optimal solution at a single run (Suman

2004).

2.2 Related works

Several software metrics are used in determining the quality of softwares. In research performed by

Okutan and Yıldız (2014) on various machine learning techniques, they proved that machine learning

provides capabilities for software defect prediction. Their studies significantly helped developers in the

usage of useful software metrics and suitable data mining techniques towards enhancing the quality of

softwares. The most effective metrics identified in their research for software defect prediction are Re-

sponse for class (ROC), Line of code (LOC) and Lack of Coding Quality (LOCQ). Singh and Chug

(2017) also showed that other factors including Coupling Between Objects (CBO), WMC, Line of code

(LOC), and RFC are effective in predicting softwares defects. Malhotra and Singh (2011) also revealed

that AUC is an effective metric that could be used to predict faulty modules in the early phases of soft-

ware development and to improve the accuracy of Machine Learning techniques.

Most software programs contain syntactic structures and semantics information which could also be

used in the prediction of defective software programs. It is this basic idea and knowledge that were

leveraged with deep learning technique in the development of software defect prediction framework via

an attention-based recurrent neural network (DP-ARN N) by Yamaguchi et al., 2012. Exploring deep

programs semantics. Peng et al. (2008) also deployed an ensemble method comprising of Bagging,

Boosting and Stacking Based techniques for 10 publicly NASA MDP dataset to assess the quality of

ensemble approaches in software fault prediction with the analytical hierarchal process. Based on the

performance measure AdaBoost with a decision tree generated the best result accuracy of 92.53 %.

Traditional defect prediction focuses on designing discriminative artificial metrics to achieve higher

model accuracy. Halstead features (1977) depend on the number of operators and operands, CK features

(Jureczko & Spinellis, 2010) based on object-oriented programs and dependency-based McCabe fea-

tures are the divisions of manual metrics adopted traditionally. Detecting defective software by relying

on static code isn't a very good approach because both buggy and clean codes snippets may have the

same number of static code attributes making it complex to differentiate (Costa et al., 2007).

The fault proneness of object-oriented programming via k-mean based clustering approach was per-

formed by Jaspree (2011). Used, for the purposes of their investigation, was a model built on the basis

of clustering algorithms (EM and X-means) from three promise repository data (AR3, AR4, AR5) to

predict software faults. At first, normalization was performed on the datasets. The CfsSubsetEval attrib-

ute selection was compared to the non-attribute reduction dataset used. The experiment result showed

that X-means have more accuracy (90.48%) than other models for AR3 without attribute reduction.

Saiqa et al. (2015) combined multiple data sets including AR1, AR6, CM1, KC1, and KC3 with various

machine learning methods for software bugs prediction. Performance measures of each dataset with

methods were analyzed and the conclusion reached was that Support Vector Machine, Multilinear Pro-

gramming and bagging had high accuracy and performances.

Some of the most popular data mining techniques (k-Nearest Neighbors, Naïve Bayes, C-4.5 and

Decision trees) were analyzed and compared. Their advantages and disadvantages were also high-

lighted. The results of the study showed that different factors were affecting the accuracy of each tech-

nique such as the nature of the problem, the used dataset and its performance matrix. In Sharma and

Chandra (2018) analysis of the applicability of various Machine Learning methods for fault prediction,

they also added to their study the most important previous researches about each ML technique and the

current trends in software bug prediction using machine learning.

3 Model Design and Methodology

The research methodology adopted involves implementing and evaluating a multi-objective optimi-

zation model for predicting bugs in software using genetic algorithm, testing statistical validity and

significance of the generated model. The model was developed using the National Aeronautics and

Space Administration (NASA) dataset comprising of fourteen similar sub-datasets (including CM1,

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 38

JM1, KC1, KC2, KC3, MC1.MC2, MW1, MW2, PC1, PC2, PC3, PC4 and PC5) all in CSV format.

This data has been used by many researchers for the prediction and classification of software bugs.

Furthermore, the choice for this data is its wide inclusion of salient and relevant software attributes for

determining the effectiveness of software.

a. Dataset description

A publicly available NASA dataset was used due to its composition of well classified salient features

(identical, constant, missing value, conflicting value, implausible values and total problems). The clas-

sification instance by features shown in Table 1. helps to identify the most distinguishing characteristics

with the most prominent attributes

Table 1. Detailed data quality analysis of the NASA defect data sets by features

3.1 Research Hypothesis

These research hypotheses are formulated and tested on a statistical T-test scale to initially

determine the correlating effects of the parametric features and the number of code lines on

software efficiency.

a. Number of Parametric Features (F):

Ho1: There is no significant relationship between the number of parametric features and overall

software efficiency.

Ha1: There is a significant relationship between the number of parametric features and overall

software efficiency.

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 39

b. Number of Lines (L):

Ho2: There is no significant relationship between the number of lines and overall software

 efficiency

Ha2: There is a significant relationship between the number of lines and overall software

 efficiency

3.2 Research Methodology

The most significant parametric features representing the entire dataset are renamed as F1, F2, F3,

F4, F5 and F6 to serve as the first set of input attributes. Consequently, the second input variables de-

pendent on the number of lines are classified as N1, N2, N3, N4, N5 and N6 as shown in Table 2.

Table 2. The G.A-based software bugs predictor variable specification

S/n
Parametric Input S/n Number of lines

F1
HALSTEAD LEVEL: Mental effort for

software design

N1. LOC_BLANK: Blank Lines of code

available in a program

F2.
 NODE COUNT: available number of

data structures used during software de-

velopment

N2. PARAMETER COUNT: Number of

variables for passing information be-

tween functions

F3.
CYCLOMATIC COMPLEXITY: Num-

ber of decision counts in a software

N3. OPERATOR NUMBERS : Number of

operators in the software

F4.
MULTIPLE CONDITION COUNT:

Number of count conditions

N4. NUMBER OF OPERANDS: Count of

instructions specifying data to be oper-

ated on

F5.
HALSTEAD VOLUME: Number of

unique operators and operand occurrence

N5. COMMENT PERCENT: Percentage

number of annotations in the source

code

F6.
DESIGN COMPLEXITY : N6. LOC CODE AND COMMENT: Avail-

able lines of code and comments in a

program.

The optimization functions for these input variables are represented mathematically in equations.

 (1) and (2) respectively.

Minimize Objective function: Parametric Features

Z1= 0.030 + 0.036(F1) + 0.040(F2) + 0.060(F3) + 0.00(F4) + 0.014(F5) + 0.008 (F6) (1)

Minimize Objective function: Number of lines

Z2= 14.839+76.461(N1) + 32.254 (N2) + 13.692 (N3) + 18.879 (N4) + 2.808 (N5) -0.034(N6) (2)

Furthermore, to determine the validity of the factors selected from the statistical T-test model, we

also adopted a computational Principal Components Analysis (PCA) algorithm as shown in Fig.2 to

perform a comparative analysis. A Genetic Algorithm-based multi-objective optimization model was

later developed by applying the algorithm as illustrated by the flowchart in Fig. 1 on the input variables.

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 40

Fig. 1. Flowchart of the GA-based multi-objective optimization model

4 Implementation

The implementation of the developed GA-based multi-objective optimization model was performed

on MATLAB 9.5 version installed on an Intel Core I5 PC with1TB HDD and 4GB RAM. A multi-

objective fitness function is generated and mathematically represented by equ. (3) and (4), respectively.

Function y = EVA_multiobjective (α, β)

Y = y (1) = 0.030 - 0.036*(α1) + 0.040*(α2) + 0.060*(α3) + 0.00*(α4) + 0.014*(α5) + 0.008*(α6) (3)

y(2)= 14.839+76.461*(β1) + 32.254*(β2) + 13.692*(β3) + 18.879*(β4) + 2.808*(β5) -0.034*(β6) (4)

where α = the first set of attributes for the parametric features;

 β = the second set of input variables dependent on the number of lines.

Other parameters for the multi-objective genetic algorithm are set as follows:

• Solver : gamultiobj-Multiobjective optimization using Genetic Algorithm

• Number of variables: 6

• Lower bounds=10, 20, 30, 40, 50, 60

• Upper bounds=20, 30, 40, 50, 60, 70

• Population type: Double vector

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 41

• Creation function: Constrain dependent

• Selection: Tournament selection with size=2

• Reproduction: Crossover fraction = 0.8

• Mutation function: Constraint dependent

• Crossover: Crossover function: Intermediate=1.0

• Migration: Direction (both) with fraction of 0.2 and interval of 20

• Distance measure function: distance crowding

• Plot functions = Average Pareto distance, Rank histogram, Pareto front, Average Pareto spread.

4.1 Algorithms: Dimensionality Reduction using Principal Component Analysis (PCA).

Major operations performed by this model are depicted by different algorithms, commencing

with the feature reduction algorithm represented in Fig.2. Fig.3 depicts the initial population generation

process, Figs. 4 and 5 are the crossover and mutation algorithms also deployed in the optimization pro-

cess to select features with improved attributes to help detect buggy software with limited lines of codes

and features.

INPUT: Raw NASA DataSet ; Ds1, …., DS13 n n-dimension vector, n

OUTPUT: Cleaned NASA Data R1, …, Rk k -dimension vector, R ɜ k≤ n Ӭ

Process:

1.BEGIN

2 .{

3 DS  n x k data matrix with α in each row

4 DS 
1

𝑛
∑ 𝐷𝑆𝑖𝑛

𝑖=1

5 -DSi in DS // from each row

6 COV ←
1

𝑛−1
 DS1 x DSn compute eigenvalue e1, …., en of COV and sort them

7 Compute matrix w which satisfies w-1 x COV X w = d// d representing the diagonal matrix of

ei genvalue of COV

8 Return k- dimension// the first k column of V

9 }

10 END

Fig. 2. Reduced feature selection algorithm

Input: Prediction features (F), Number of lines (N)

Output: Fittest variables (v) , v1, v2

Process:

1. Begin

2. Generate random population a, b from F and N

 3. Y ← a x b

 4. While Y is not empty do

5. T1 ← Fit-featureSelection1

6. T2 ← Fit-featureSelection2

7. Select a random number r ⱻ 0 ≥ r < 1

8. If (r > T) do // if r is less than the crossover rate

 9. crossover(T1, T2)

10. else return newoffspring 1 ← T1 , newoffspring 2 ← T2

11. mutation(new offspring1, newoffspring2)

12. V ← offspring 1, offspring 2

13. Return v

14. End if

15. End while

16. End

Fig. 3. Genetic Algorithm Process

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 42

Input: m, n (𝑝𝑎𝑟𝑒𝑛𝑡 1, 2),𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒,𝑟.

Output: t1, t2 (offsprings)

Process:

 1. m1← m and n1← n

2. while crossover rate r ← true do:

i. Task J, a randomly selected task acts as the crossover point of the offsprings.

ii. create a swap point (p1) for necessary operations for crossover

iii. Randomly select a swap point (p2) for swapping

iv. Collect similar chromosomes in 𝑆𝑒𝑡1(J)and subsets in (J) in locations zero(0) and p1

i. 𝑠𝑤𝑎𝑝 chromosomes (u)equals subsets in (J) with equal positions or greater

vi. Repeat steps iv and v

vii. FOR every subset S2 in new swapSet2(J) do:

(a) Add S2 as a new subset in 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡1(J).

(b) Join S2 with an existing subset (X1) in 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡1 (J).

(c) Select a subset X1 in 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡1(J), eliminate X1 elements found in S2 and add S2 to re-

maining.

viii. Repeat Step vii

i. D1(J)← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡1(J) and D2(J)← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡2(t).

j. Repeat steps ii. to viii

k. Update the related tasks to J.

3. Return t1 and t2.
Fig. 4. Crossover operation algorithm

Input: t1and t2

Output: Mutated individuals

Process:

 1: While Mutation rate r ≠ 0 do

2. for every task (J) involving t1 and t2 with condition function f(J)

3. Do any of the following:

a. Select a subset X in f(J)and add a task J1 to X, where J1 belongs to the set of tasks in the individ-

ual.

b. Select a subset X in f(J)and remove a task J1 from X, where J1 belongs to X. If X is empty after J1

removal, exclude X from f(J).

c. Redistribute the elements in f(J).

3. Repeat 2 but use the condition (J) instead of F(J).

4. Return Mutated individuals
Fig. 5. Mutation algorithm

Input: NASA Dataset

Output: Optimized Dataset with Improved Population

Process:

1. Apply Dimensionality reduction using PCA

2. Generate multi-linear regression equations

3. Select a random initial population Pt (S)

4. While (Stopping Criteria are NOT met) do

5. Perform Genetic Algorithm optimization

6. Evaluate fitness of the population

7. Select parents using a stochastic selection method

8. Apply crossover and mutation

9. Update Pt, ND and set t=t+1// processed dataset

10. End while

11. Return ND and Pt

12. End.

Fig. 6. Algorithm of the proposed GA based optimization model

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 43

4.2 Implementation results and discussion

An instance of the collated NASA dataset containing thirty-eight (38) valued attributes for buggy

software detection is shown in Fig. 7. The system’s memory space is efficiently utilized, and redundancy

of data is eliminated through a generated component transformed matrix derived by applying Varimax

and Kaiser normalization technique. Six major components as displayed in Table 3 after normalization

are selected and used for developing the model.

For further implementation and accuracy of the model, the reduced dataset was subjected to genetic

algorithm (GA) optimization with the MATLAB software. In Fig.8, an interface depicting the written

objective functions in MATLAB scripts for fitness selection of chromosomes and offsprings for a better

and optimized result was also specified.

Fig. 7. Instance of CM1 dataset contained in the NASA database

Table 3. Component Transformation Matrix

Principal Component Analysis and Varimax with Kaiser Normalization

Components 1 2 3 4 5 6

1 0.673 0.636 0.25 0.276 0.055 0.029

2 0.501 -0.561 -0.427 0.485 -0.104 -0.082

3 -0.045 0.455 -0.709 -0.184 -0.468 -0.187

4 -0.024 0.15 -0.489 -0.027 0.848 0.133

5 0.538 -0.227 0.015 -0.807 0.049 -0.07

6 0.056 -0.015 -0.112 -0.057 -0.214 0.967

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 44

Fig. 8.G.A optimization interface for fitness selection with specification

Fig. 9. G.A-based optimization objective functions plot.

Sample plots derived from the optimization procedures and fitness selections of offsprings are de-

picted in Figs. 10, 11 and 12. Fig. 10 is a plot showing the distance of individuals at each iteration.

Ranks and spread of variables are also depicted in Figs. 11 and 12, respectively.

Fig. 10. Distance of individuals at successive iteration

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 45

Fig. 11. Average spread of variable features

Fig. 12. Ranks of variable features

 Fig. 13. G.A based multi-objective optimization model Accuracy metric

0

20

40

60

80

100
95.9

49.2

96.4 95.9 96.2

41.5

83.1
96.9

https://doi.org/10.29114/ajtuv.vol6.iss1.245

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 46

5 Conclusion

Proposed, in the present paper, is a genetic algorithm-based multi-objective model to predict software

bugs. Multi-objective optimization has proven to be successful in various fields of machine learning.

Its usage for predicting software bugs is one of its numerous applications as software is very essential

to the functionality of any operational hardware.

The adoption of PCA for feature selection proved conclusively that the six significant software fea-

tures are sufficiently able to map the entire wide range data obtained from the publicly available NASA

dataset for software validity check. Thus, reducing computational time and memory usage led to the

normalization of data. Comparison of the statistical technique (t-test) generated results with the compu-

tational PCA on dataset returned closely related range of values.

 Furthermore, the results generated by the Genetic Algorithm-based multi-objective optimization

software bugs predictor have greatly depicted the accuracy of this model. Individual response charac-

teristics are obtained at optimal sets of levels for the processed features derived from the statistical re-

sponse surface techniques. The results obtained are within 95% to 97% prediction accuracy of the re-

spective response intervals acquired through the optimized model completed in a MATLAB-based soft-

ware environment. This also indicates that the optimal values are within the specified range of processed

variables for accurate software bugs prediction.

Future research on the prediction of software bugs will explore the practical application of Differen-

tial Evolution (DE), ensemble machine learning algorithms and other computational meta-heuristics al-

gorithms for software predictions.

References

Akmel, F., Birihanu, E. Siraj, B. (2017). A literature review study of software defect prediction using

machine learning techniques. Int. J. Emerg. Res. Manag. Technology, 6(6), 300-306.

https://doi.org/10.23956/ijermt.v6i6.286

Bavisi, S., Mehta, J., & Lopes, L. (2014). A comparative study of different data mining algorithms. In-

ternational Journal of Current Engineering and Technology, 4(5), 3248-3252.

Catal C., Diri, B. (2009). A systematic review of software fault prediction studies. Expert Systems with

Applications, 36 (4), 7346–7354. https://doi.org/10.1016/j.eswa.2008.10.027

Cha, S. H., & Tappert, C. C. (2009). A genetic algorithm for constructing compact binary decision

trees. Journal of pattern recognition research, 4(1), 1-13. https://doi.org/10.13176/11.44

Challagulla, V. U. B., Bastani, F. B., Yen, I. L., & Paul, R. A. (2008). Empirical assessment of machine

learning based software defect prediction techniques. International Journal on Artificial Intel-

ligence Tools, 17(02), 389-400. https://doi.org/10.1142/S0218213008003947

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd

ACM SIGKDD, International conference on knowledge discovery and data mining, (22), 785-

794. https://doi.org/10.1145/2939672.2939785

Costa, E. O., de Souza, G. A., Pozo, A. T. R., & Vergilio S. R. (2007). Exploring Genetic Programming

and Boosting Techniques to Model Software Reliability. IEEE Transactions on Reliability, (56):

422-434. https://doi.org/10.1109/TR.2007.903269

Doval, D., Mancoridis, S. & Mitchell, B. S. (1999). Automatic clustering of software systems using a

genetic algorithm. Proc. Conference of Software Technology and Engineering Practice, Eng-

land, 73-81. https://doi.org/10.1109/STEP.1999.798481

https://doi.org/10.29114/ajtuv.vol6.iss1.245
https://doi.org/10.23956/ijermt.v6i6.286
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.13176/11.44
https://doi.org/10.1142/S0218213008003947
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/TR.2007.903269
https://doi.org/10.1109/STEP.1999.798481

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 47

Gupta, Dharmendra, L. & Kavita S. (2017). Software bug prediction using object-oriented metrics.

Sādhanā (1), 1-15.

Haznedar, B. & Kalinli, A. (2016). Training ANFIS Using Genetic Algorithm for Dynamic Systems

Identification. Int j Intell Sys appl eng, 4(1), 44-47. https://doi.org/10.18201/ijisae.266053

Jaspree, K. (2011). A k-means Based Approach for Prediction of Level of Severity of Faults in Software

System. In Proceedings of International conference on Intelligent Computational Systems.

Jureczko, M., & Spinellis, D. (2010). Using object-oriented design metrics to predict software de-

fects. Models and Methods of System Dependability. Oficyna Wydawnicza Politechniki

Wrocławskiej, 69-81.

Kim, S., Zhang, H., Wu, R. and Gong, L. (2011). Dealing with noise in defect prediction. Proceeding

of the 33rd International Conference on Software Engineering, ICSE (11), 481–490.

https://doi.org/10.1145/1985793.1985859

Malhotra, R. & Singh, Y. (2011). On the applicability of machine learning techniques for object-oriented

software fault prediction. Software Engineering: An International Journal 1(1), 24-37.

Naidu, M. S., & Geethanjali, N. (2013). Classification of defects in software using decision tree algo-

rithm. International Journal of Engineering Science and Technology, 5(6), 1332-1342.

Okutan, A., & Yıldız, O. T. (2014). Software defect prediction using Bayesian networks. Empirical

Software Engineering 19(1),154-181. https://doi.org/10.1007/s10664-012-9218-8

Peng, Y., Kou, G., Wang, G., Wu, W., & Shi, Y. (2011). Ensemble of software defect predictors: an

AHP-based evaluation method. International Journal of Information Technology & Decision

Making, 10(01), 187-206. https://doi.org/10.1142/S0219622011004282

Rahman, F., Posnett, D. & Devanbu, P. (2012). Recalling the imprecision of cross-project defect pre-

diction. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Founda-

tions of Software Engineering, (12) 1–61:11 New York, NY, USA. ACM.

https://doi.org/10.1145/2393596.2393669

Sharma, D. & Chandra, P. (2018) Software Fault Prediction Using Machine Learning Techniques. In

Smart Computing and Informatics (pp.541-549). Springer, Singapore.

https://doi.org/10.1007/978-981-10-5547-8_56

Shepperd, M., Bowes, D. & Hall, T. (2014). Researcher bias: The use of machine learning in software

defect prediction. IEEE Transactions on Software Engineering, 40(6), 603-616.

https://doi.org/10.1109/TSE.2014.2322358

Shivaji, S., Whitehead, E. J., Akella, R. & Kim, S. (2012). Reducing features to improve code change-

based bug prediction. IEEE Transactions on Software Engineering, 39(4), 552-569.

https://doi.org/10.1109/TSE.2012.43

Singh, P. & Chug, A. (2017). Software defect prediction analysis using machine learning algorithms. In

7th International Conference on Cloud Computing, Data Science & Engineering Confluence,

212-232. IEEE. https://dpi.org/10.1109/CONFLUENCE.2017.7943255

Suman, B. (2004). Study of simulated annealing-based algorithms for multi-objective optimization of

a constrained problem. Comput. Chem. Eng. 28(9) 1849–1871.

https://doi.org/10.1016/j.compchemeng.2004.02.037

https://doi.org/10.29114/ajtuv.vol6.iss1.245
https://doi.org/10.18201/ijisae.266053
https://doi.org/10.1145/1985793.1985859
https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1142/S0219622011004282
https://doi.org/10.1145/2393596.2393669
https://doi.org/10.1007/978-981-10-5547-8_56
https://doi.org/10.1109/TSE.2014.2322358
https://doi.org/10.1109/TSE.2012.43
https://doi.org/10.1109/CONFLUENCE.2017.7943255
https://doi.org/10.1016/j.compchemeng.2004.02.037

https://doi.org/10.29114/ajtuv.vol6.iss1.245

Vol.6 Issue 1 (2022)

ISSN 2603-316X (Online)
Published: 2022-08-11

 Page | 48

Yamaguchi, F., Lottmann, M. & Rieck, K. (2012). Generalized vulnerability extrapolation using abstract

syntax trees. In Proceedings of the 28th Annual Computer Security Applications Conference,

ACM, (pp.359–368), Orlando, FL, USA. https://doi.org/10.1145/2420950.2421003

Zavala, G. R., Nebro, A. J., Luna, F., & Coello Coello, C. A. (2014). A survey of multi-objective me-

taheuristics applied to structural optimization. Structural and Multidisciplinary Optimiza-

tion, 49(4), 537-558. https://doi.org/10.1007/s00158-013-0996-4

Zhou, Y., Yang, Y., Lu, H., Chen, L., Li, Y., Zhao, Y., ... & Xu, B. (2018). How far we have progressed

in the journey? an examination of cross-project defect prediction. ACM Transactions on Soft-

ware Engineering and Methodology (TOSEM), 27(1), 1-51. https://doi.org/10.1145/3183339

https://doi.org/10.29114/ajtuv.vol6.iss1.245
https://doi.org/10.1145/2420950.2421003
https://doi.org/10.1007/s00158-013-0996-4
https://doi.org/10.1145/3183339

