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Abstract.  

The accuracy and reliability of softwares are critical factors for consideration in the operation of 

any electronic or computing device.  Although, there exist several conventional methods of software 

bugs prediction which depend solely on static code metrics without syntactic structures or semantic 

information of programs which are more appropriate for developing accurate predictive models.  In 

this paper, software bugs are predicted using a Genetic Algorithm (GA)-based multi-objective opti-

mization model implemented in MATLAB on the National Aeronautics and Space Administration 

(NASA) dataset comprising thirty-eight distinct factors reduced to six (6) major factors via the use 

of the Principal Component Analysis (PCA) algorithm with SPSS, after which a linear regression 

equation was derived. The developed GA- based multi-objective optimization model was well-tried 

and tested. The accuracy and sensitivity level were also analyzed for successful bug detection. The 

results for optimal values ranging from   95% to 97% were recorded at an average accuracy of 96.4% 

derived through MATLAB-implemented measures of critical similarities. The research findings re-

veal that the model hereto proposed will provide an effective solution to the problem of predicting 

buggy software in general circulation. 

Keywords:   Software bugs, Genetic Algorithm, Optimization, Prediction, Machine learning 

1 Introduction 

Software bugs are usually known for the adverse effects they have on computer programs and de-

vices, and for causing frequent issues of hardware malfunction.  Predicting defective software modules 

has been a great challenge (Catal & Diri, 2009) although it helps detect defect-prone modules (Kim et 

al., 2011), which play critical roles in software quality assurance. 

 A software bug is simply an error or fault causing a program to generate wrong results or function 

abnormally. Several causes of bugs have been associated with errors in source program designs, compi-

lation, and operating systems malfunctions with great glitches of related disasters (Gupta, Dharmendra, 

& Kavita, 2017). A high rate of death was recorded in 1980 due to code bugs in the Therac-25 radiation 

therapy system. Also, historical records of the events in 1994, detailing the reason for the Chinook Royal 

Air Force helicopter smash into the Kintyre Mall has been triggered by a software error in the engine 

control computer of the aircraft thereby killing twenty-nine (Simon, 2012). Similarly, The European 

Space Agency's $1 billion prototype Ariane 5 rocket after a minute launch was also destroyed due to the 

presence of bugs in its on-board guidance computer program (Okutan & Yıldız, 2014). 

Nonetheless, present-day software defects prediction entails the use of machine learning (Bavisi,  

Mehta, & Lopes, 2014) with historical data in repositories (Catal et al., 2009). The outcome from this 

will help developers gain stability and reliability of apps to find and repair possible defects in softwares.  

Cross-project and within-project software defect prediction are common categories of software predic-

tion processes (Rahman, Posnett & Devanbu, 2012), which could be adopted, either one or both, for 

software bug prediction depending on the homogeneity of the sourced data to the target data (Zhou et 

al., 2018). 

 

The first step towards the process of debugging through machine learning is the collection of in-

stances from software repositories such as problem tracking systems, version control systems, or e-mail 
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repositories for the development of a prediction model.  Each instance could be a source code file con-

taining class, functions or methods, device or software package for classifying software as either defec-

tive or not non-defective (Naidu &  Geethanjali, 2013).  Software are considered defective when they 

contain several bugs interfering with their functionality (Shepperd, Bowes & Hall, 2014), such as caus-

ing a functional system to crash or stop responding to users' requests and commands.  Security challeng-

ing bugs may provide malicious users access and unauthorized privileges to an organization's system 

(Akmel, Birihanu & Siraj, 2017). Pre-processing machine learning techniques (feature selection, data 

normalization, and noise reduction) could also be performed on the instances with labels and metrics 

(Shivaji et al., 2012; Kim et al., 2011).  For accurate prediction, the model must be well-tried with lots 

of training instance samples and tested before being deployed for software bugs detection in real-life 

sceneries. 

 

Adopted in the present paper, is an adaptive heuristic machine learning search (Genetic Algorithm), 

founded on the same principle as the natural fitness selection of genes, for a multi-variable input selec-

tion for a more optimized loss (parametric features) and cost (Line numbers) functions in bugs' predic-

tion. The Genetic Algorithm (GA) model has been used extensively to solve software testing problems 

involving classification, optimization and regression.  The remaining section of this paper is structured 

as follows: Section 2 commences with a brief introduction to the Genetic Algorithm, its operational 

stages towards software bugs prediction with optimization methods and Section 3 provides the method-

ology starting with data description and selection, preprocessing techniques and optimization methods. 

The implementation of the Genetic Algorithm-based multi-objective optimized model and the results 

are demonstrated in Section 4. Highlighted, lastly, in Section 5, are the conclusions reached and the 

future directions of research. 

2 Genetic Algorithm for optimization in software bugs prediction.  

The genetic algorithm (GA) developed by John Holland in 1960 (Bies, et al., 2006), is a metaheuristic 

method centered on the idea of Darwin's theory of evolution. This algorithm is motivated by biological 

operators (mutation, crossover and selection) for the production of quality solutions towards solving 

optimization and search problems.  G.A process begins with the population of randomly generated can-

didates (phenotypes) with a highly distinguishable set of properties known as chromosomes which can 

be mutated or altered. Each phenotype is usually represented as binary strings of 0s and 1s regarded as 

the first generation, but other encodings are possible as well (Cha at al., 2009).   

The initial generation undergoes an iterative process where the fitness of each candidate in the gen-

eration is evaluated. The candidate fitness is further determined by the objective function(s) provided 

for the problem under optimization. Fitted candidates are stochastically selected with genes modified to 

form a new generation which is used in the next iteration until a satisfactory fitness level is reached or 

number. Genetic representation of the solution domain and formulation of fitness function for its eval-

uation are the two major conditions required in the implementation of the GA (Doval, Mancoridis & 

Mitchell, 1999). Once these are clearly defined, GA proceeds to initialize a population of solutions, 

improves it through repetitive application of the mutation, crossover, inversion and selection operators.  

The stages are further summarized in the sub-sections below. 

a. Initialization 

The initialization output is a collection of randomly generated candidates possessing a wide range of 

possible solutions for the surveyed optimization problem.  Additionally, the population size itself is 

closely related to the nature of the problem being solved and the availability of candidates for the solu-

tion. The resulting solutions, as is often the case, are concealed in areas where optimal solutions are 

likely to be found (Challagulla et al., 2008). 
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b. Selection 

The selection of candidates is determined by the fitness function with the main aim of rating the 

fitness value of each solution and preferentially selecting the best solutions after each successful itera-

tion (Jaspree, 2011). Candidates are represented in an array of bits with values such as zero and one.  

Although fitness function is always problem-dependent, it also measures the quality of the represented 

solution. Defining fitness functions may be quite hard in some problems (Singh & Chug, 2017), but the 

use of simulation tools or interactive genetic algorithms will be of great assistance. 

c. Genetic mutation and operations 

For a set of new candidates (offsprings) marking the second generation to be created, there must be 

an interaction between the parents. Similarly, for each new solution, a combination of genetic operations 

in terms of cross-over and mutation is performed on the initial candidates (parents) selected from the 

pool of generated solutions (Haznedar & Kalinli, 2016).  The new solution (offsprings) typically shares 

many characteristics with the parents, thus, making them more suitable since only the best organisms 

from the first and subsequent generations are selected for breeding to yield the best optimal solution.   

New parents are also selected for each new child and the process continues until a new population of 

solutions of appropriate size with increased state of fitness for the population is generated. Other heu-

ristics can be adopted for a faster and more robust operation (Cha & Tappert, 2009) 

d. Termination conditions. 

Termination conditions are specified for the successive generations of offspring. Possible conditions 

for the termination include one or more of these factors: 

i.Deriving optimal solution satisfying the given conditions 

ii.Reaching the fixed number of generations 

iii.Keeping within the allocated budgets (memory and computational time) 

iv.Manual inspection and reaching a point where no better results could be generated 

2.1 Multi Objective Optimization Algorithms  

The process of selecting the best elements (with consideration to certain criteria) from given alterna-

tives is termed optimization. More generally, it involves finding "best available" values attributes which 

satisfy some objective functions for a given problem (Zavala et al., 2014).  It is a commonly used term 

not only in computer science, mathematics and engineering but also in our daily life ranging from budg-

eting our finances, planning schedules or trips to determining the number of items.     

The task of determining a single objective function for determining the best solution to an optimiza-

tion problem is known as single-objective optimization (Suman, 2004) but when two or more functions 

are involved in seeking one or more optimum solutions to a problem, such is regarded as a multi-objec-

tive optimization problem.  Naturally, a trade-off usually exists between different goals in real life as 

there is no singular optimal approach to multi-objective optimization problems (Jaddan et al., 2008). So, 

when more than one objective function is involved in an optimization problem, the task of seeking one 

or more optimal solutions is known as multi-objective optimization.    

Commonly used approaches in multi-objective algorithms are such that the objective functions are 

merged using a weighted sum method (scalarizing) to generate a single composite function. The Pareto 

optimal solution seems ideal for this approach but with a limitation for not being able to generate all 

accurate points to a scalarized problem. Secondly, all but one target could be moved to a constrained 

condition with the aim of getting a set of Pareto Optimal points (Chen & Guestrin, 2016) with the same 

process repeated for all combinations of values. Another approach is to select the entire optimal solution 

set at once, which may be quite challenging to achieve.  

Better results are obtained with heuristic algorithms due to their possession of higher-level techniques 

or methods aimed at finding precise solutions to complex optimization problems with no available pre-

cise methods(Zavala et al., 2014).  Continuous increase in the acceptance rate of heuristic algorithms is 
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due to their adaptability for use in both combinatorial and continuous functions optimization problems 

and their ability to converge multiple generated solutions to an optimal solution at a single run (Suman 

2004). 

2.2 Related works 

Several software metrics are used in determining the quality of softwares. In research performed by 

Okutan and Yıldız (2014) on various machine learning techniques, they proved that machine learning 

provides capabilities for software defect prediction. Their studies significantly helped developers in the 

usage of useful software metrics and suitable data mining techniques towards enhancing the quality of 

softwares. The most effective metrics identified in their research for software defect prediction are Re-

sponse for class (ROC), Line of code (LOC) and Lack of Coding Quality (LOCQ). Singh and Chug 

(2017) also showed that other factors including Coupling Between Objects (CBO), WMC, Line of code 

(LOC), and RFC are effective in predicting softwares defects. Malhotra and Singh (2011) also revealed 

that AUC is an effective metric that could be used to predict faulty modules in the early phases of soft-

ware development and to improve the accuracy of Machine Learning techniques. 

Most software programs contain syntactic structures and semantics information which could also be 

used in the prediction of defective software programs. It is this basic idea and knowledge that were 

leveraged with deep learning technique in the development of software defect prediction framework via 

an attention-based recurrent neural network (DP-ARN N) by Yamaguchi et al., 2012.  Exploring deep 

programs semantics. Peng et al. (2008) also deployed an ensemble method comprising of   Bagging, 

Boosting and Stacking Based techniques for 10 publicly NASA MDP dataset to assess the quality of 

ensemble approaches in software fault prediction with the analytical hierarchal process.  Based on the 

performance measure AdaBoost with a decision tree generated the best result accuracy of 92.53 %. 

Traditional defect prediction focuses on designing discriminative artificial metrics to achieve higher 

model accuracy.  Halstead features (1977) depend on the number of operators and operands, CK features 

(Jureczko & Spinellis, 2010) based on object-oriented programs and dependency-based McCabe fea-

tures are the divisions of manual metrics adopted traditionally. Detecting defective software by relying 

on static code isn't a very good approach because both buggy and clean codes snippets may have the 

same number of static code attributes making it complex to differentiate (Costa et al., 2007). 

The fault proneness of object-oriented programming via k-mean based clustering approach was per-

formed by Jaspree (2011). Used, for the purposes of their investigation, was a model built on the basis 

of clustering algorithms (EM and X-means) from three promise repository data (AR3, AR4, AR5) to 

predict software faults. At first, normalization was performed on the datasets. The CfsSubsetEval attrib-

ute selection was compared to the non-attribute reduction dataset used. The experiment result showed 

that X-means have more accuracy (90.48%) than other models for AR3 without attribute reduction. 

Saiqa et al. (2015) combined multiple data sets including AR1, AR6, CM1, KC1, and KC3 with various 

machine learning methods for software bugs prediction.  Performance measures of each dataset with 

methods were analyzed and the conclusion reached was that Support Vector Machine, Multilinear Pro-

gramming and bagging had high accuracy and performances.   

Some of the most popular data mining techniques (k-Nearest Neighbors, Naïve Bayes, C-4.5 and 

Decision trees) were analyzed and compared.  Their advantages and disadvantages were also high-

lighted.  The results of the study showed that different factors were affecting the accuracy of each tech-

nique such as the nature of the problem, the used dataset and its performance matrix.  In Sharma and 

Chandra (2018) analysis of the applicability of various Machine Learning methods for fault prediction, 

they also added to their study the most important previous researches about each ML technique and the 

current trends in software bug prediction using machine learning.  

3 Model Design and  Methodology 

The research methodology adopted involves implementing and evaluating a multi-objective optimi-

zation model for predicting bugs in software using genetic algorithm, testing statistical validity and 

significance of the generated model. The model was developed using the National Aeronautics and 

Space Administration (NASA) dataset comprising of fourteen similar sub-datasets (including CM1, 
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JM1, KC1, KC2, KC3, MC1.MC2, MW1, MW2, PC1, PC2, PC3, PC4 and PC5) all in CSV format. 

This data has been used by many researchers for the prediction and classification of software bugs. 

Furthermore, the choice for this data is its wide inclusion of salient and relevant software attributes for 

determining the effectiveness of software.   

a. Dataset description 

A publicly available NASA dataset was used due to its composition of well classified salient features 

(identical, constant, missing value, conflicting value, implausible values and total problems). The clas-

sification instance by features shown in Table 1. helps to identify the most distinguishing characteristics 

with the most prominent attributes     

Table 1. Detailed data quality analysis of the NASA defect data sets by features 

 

3.1 Research Hypothesis 
 

These research hypotheses are formulated and tested on a statistical T-test scale to initially 

determine the correlating effects of the parametric features and the number of code lines on 

software efficiency. 
 

  

a. Number of Parametric Features (F): 

 

Ho1: There is no significant relationship between the number of parametric features and overall 

software efficiency. 
 

Ha1: There is a significant relationship between the number of parametric features and overall 

software efficiency. 
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b. Number of Lines (L): 

Ho2: There is no significant relationship between the number of lines and overall software              

        efficiency 

Ha2: There is a significant relationship between the number of lines and overall software  

        efficiency 

3.2 Research Methodology 

The most significant parametric features representing the entire dataset are renamed as F1, F2, F3, 

F4, F5 and F6 to serve as the first set of input attributes. Consequently, the second input variables de-

pendent on the number of lines are classified as N1, N2, N3, N4, N5 and N6 as shown in Table 2.  

Table 2. The G.A-based software bugs predictor variable specification 

S/n 
Parametric Input  S/n  Number of lines 

F1 
HALSTEAD LEVEL: Mental effort for 

software design 

N1. LOC_BLANK:  Blank Lines of code  

available in a program 

F2. 
 NODE COUNT: available number of 

data structures used  during software de-

velopment 

N2. PARAMETER COUNT: Number of 

variables for passing information be-

tween functions 

F3. 
CYCLOMATIC COMPLEXITY: Num-

ber of decision counts in a software 

N3.  OPERATOR NUMBERS : Number of 

operators in the software 

F4. 
MULTIPLE CONDITION COUNT: 

Number of count conditions 

N4. NUMBER OF OPERANDS: Count of 

instructions specifying data to be oper-

ated on 

F5. 
HALSTEAD VOLUME: Number of 

unique operators and operand occurrence 

N5. COMMENT PERCENT: Percentage 

number of annotations in the source 

code 

F6. 
DESIGN COMPLEXITY :  N6. LOC CODE AND COMMENT: Avail-

able lines of code and comments in a 

program. 

The optimization functions for these input variables are represented mathematically in equations.  

      (1) and (2) respectively. 

Minimize Objective function: Parametric Features 

 

Z1= 0.030 + 0.036(F1) + 0.040(F2) + 0.060(F3) + 0.00(F4) + 0.014(F5) + 0.008 (F6)     (1) 

 

Minimize Objective function: Number of lines 

 

Z2= 14.839+76.461(N1) + 32.254 (N2) + 13.692 (N3) + 18.879 (N4) + 2.808 (N5) -0.034(N6)   (2) 

 

Furthermore, to determine the validity of the factors selected from the statistical T-test model, we 

also adopted a computational Principal Components Analysis (PCA) algorithm as shown in Fig.2 to 

perform a comparative analysis. A Genetic Algorithm-based multi-objective optimization model was 

later developed by applying the algorithm as illustrated by the flowchart in Fig. 1 on the input variables.   
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Fig. 1. Flowchart of the GA-based multi-objective optimization model 

4 Implementation 

The implementation of the developed GA-based multi-objective optimization model was performed 

on MATLAB 9.5 version installed on an Intel Core I5 PC with1TB HDD and 4GB RAM. A multi-

objective fitness function is generated and mathematically represented by equ. (3)  and (4), respectively. 

 

Function y = EVA_multiobjective (α, β) 

Y = y (1) = 0.030 - 0.036*(α1) + 0.040*(α2) + 0.060*(α3) + 0.00*(α4) + 0.014*(α5) + 0.008*(α6 )        (3)
              
y(2)= 14.839+76.461*(β1) + 32.254*(β2) + 13.692*(β3) + 18.879*(β4) + 2.808*(β5) -0.034*(β6)        (4) 

 

where α = the first set of attributes for the parametric features; 

                   β = the second set of input variables dependent on the number of lines. 

Other parameters for the multi-objective genetic algorithm are set as follows: 

 

• Solver : gamultiobj-Multiobjective optimization using Genetic Algorithm 

• Number of variables: 6 

• Lower bounds=10, 20, 30, 40, 50, 60 

• Upper bounds=20, 30, 40, 50, 60, 70 

• Population  type: Double vector 
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• Creation function: Constrain dependent 

• Selection: Tournament selection with size=2 

• Reproduction: Crossover fraction = 0.8 

• Mutation function: Constraint dependent 

• Crossover: Crossover function: Intermediate=1.0 

• Migration: Direction (both) with fraction of 0.2 and interval of 20 

• Distance measure function: distance crowding 

• Plot functions = Average Pareto distance, Rank histogram, Pareto front, Average Pareto spread. 

4.1 Algorithms:  Dimensionality Reduction using Principal Component Analysis (PCA).  

Major operations performed by this model are depicted by different algorithms, commencing 

with the feature reduction algorithm represented in Fig.2. Fig.3 depicts the initial population generation 

process, Figs. 4 and 5 are the crossover and mutation algorithms also deployed in the optimization pro-

cess to select features with improved attributes to help detect buggy software with limited lines of codes 

and features. 

INPUT: Raw NASA DataSet ; Ds1, …., DS13 n   n-dimension vector, n 

OUTPUT:  Cleaned NASA Data R1, …,  Rk      k -dimension vector, R ɜ k≤ n   Ӭ 

Process:   

1.BEGIN 

2 .{ 

3 DS  n x k data matrix with α in each row 

4 DS   
1

𝑛
∑ 𝐷𝑆𝑖𝑛

𝑖=1  

5  -DSi in DS // from each row 

6 COV ←
1

𝑛−1
 DS1 x DSn compute eigenvalue e1, …., en of COV and sort them 

7 Compute matrix w which satisfies w-1 x COV X w = d// d representing the diagonal matrix of 

ei genvalue of COV 

8 Return k- dimension// the first k column of V 

9 } 

10 END 

Fig. 2. Reduced feature selection algorithm  

Input: Prediction features (F), Number of lines (N) 

Output: Fittest variables (v) , v1, v2  

Process:  

1. Begin  

2. Generate random population a, b from F and N 

 3. Y ← a x b  

 4. While Y is not empty do  

5. T1 ← Fit-featureSelection1  

6. T2 ← Fit-featureSelection2 

7. Select a random number r  ⱻ 0 ≥ r < 1  

8. If ( r > T) do // if r is less than the crossover rate  

 9. crossover(T1, T2)  

10. else return newoffspring 1 ← T1 , newoffspring 2 ← T2  

11. mutation(new offspring1, newoffspring2)  

12. V ← offspring 1, offspring 2  

13. Return v 

14. End if  

15. End while  

16. End 

Fig. 3. Genetic Algorithm Process  
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Input: m, n (𝑝𝑎𝑟𝑒𝑛𝑡 1, 2),𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒,𝑟.  

Output: t1, t2 (offsprings)  

Process:  

 1. m1← m and n1← n  

2. while crossover rate r ← true do:  

i. Task J, a randomly selected task acts as the crossover point of the offsprings. 

ii. create a swap point (p1) for necessary operations for crossover 

iii. Randomly select a swap point (p2) for  swapping  

iv. Collect similar chromosomes in 𝑆𝑒𝑡1(J)and subsets in (J) in locations zero(0) and p1 

i. 𝑠𝑤𝑎𝑝 chromosomes (u)equals subsets in (J) with equal positions or greater 

vi. Repeat steps iv and v  

vii. FOR every subset S2 in new swapSet2(J) do:  

(a) Add S2 as a new subset in 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡1(J).  

(b) Join S2 with an existing subset (X1) in 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡1 (J).  

(c) Select a subset X1 in 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡1(J), eliminate X1 elements found in S2 and add S2 to re-

maining.  

viii. Repeat Step vii  

i. D1(J)← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡1(J) and D2(J)← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡2(t).  

j. Repeat steps ii. to viii  

k. Update the related tasks to J.  

3. Return t1 and t2.  
Fig. 4. Crossover operation algorithm 

Input: t1and t2  

Output: Mutated individuals  

Process:  

 1: While Mutation rate r ≠ 0 do  

2. for every task (J) involving t1 and t2 with condition function f(J)  

3. Do any of the following:  

a. Select a subset X in f(J)and add a task J1 to X, where J1 belongs to the set of tasks in the individ-

ual.  

b. Select a subset X in f(J)and remove a task J1 from X, where J1 belongs to X. If X is empty after J1 

removal, exclude X from f(J).  

c. Redistribute the elements in f(J).  

3. Repeat 2 but use the condition (J) instead of F(J).  

4. Return Mutated individuals 
Fig. 5. Mutation algorithm 

Input: NASA Dataset  

Output: Optimized Dataset with Improved Population  

Process:  

1. Apply Dimensionality reduction using PCA 

2. Generate multi-linear regression equations 

3. Select a random initial population Pt (S) 

4. While (Stopping Criteria are NOT met) do 

5. Perform Genetic Algorithm optimization 

6. Evaluate fitness of the population 

7. Select parents using a stochastic selection method 

8. Apply crossover and mutation 

9. Update Pt, ND and set t=t+1// processed dataset 

10. End while 

11. Return ND and Pt 

12. End. 

Fig. 6. Algorithm of the proposed GA based optimization model 
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4.2 Implementation results and discussion 

An instance of the collated NASA dataset containing thirty-eight (38) valued attributes for buggy 

software detection is shown in Fig. 7. The system’s memory space is efficiently utilized, and redundancy 

of data is eliminated through a generated component transformed matrix derived by applying   Varimax 

and Kaiser normalization technique. Six major components as displayed in Table 3 after normalization 

are selected and used for developing the model.   

For further implementation and accuracy of the model, the reduced dataset was subjected to genetic 

algorithm (GA) optimization with the MATLAB software. In Fig.8, an interface depicting the written 

objective functions in MATLAB scripts for fitness selection of chromosomes and offsprings for a better 

and optimized result was also specified.  

 

   

 

Fig. 7. Instance of CM1 dataset contained in the NASA database  

Table 3.    Component Transformation Matrix 

Principal Component Analysis and Varimax with Kaiser Normalization 

Components 1 2 3 4 5 6 

1 0.673 0.636 0.25 0.276 0.055 0.029 

2 0.501 -0.561 -0.427 0.485 -0.104 -0.082 

3 -0.045 0.455 -0.709 -0.184 -0.468 -0.187 

4 -0.024 0.15 -0.489 -0.027 0.848 0.133 

5 0.538 -0.227 0.015 -0.807 0.049 -0.07 

6 0.056 -0.015 -0.112 -0.057 -0.214 0.967 

 

 

https://doi.org/10.29114/ajtuv.vol6.iss1.245


 

 

https://doi.org/10.29114/ajtuv.vol6.iss1.245  

Vol.6 Issue 1 (2022)  

ISSN 2603-316X (Online) 
Published:   2022-08-11  

 

 Page | 44  

 

 

Fig. 8.G.A optimization interface for fitness selection with specification 

 

                    
 

Fig. 9. G.A-based optimization objective functions plot. 

Sample plots derived from the optimization procedures and fitness selections of offsprings are de-

picted in Figs. 10, 11 and 12. Fig. 10 is a plot showing the distance of individuals at each iteration. 

Ranks and spread of variables are also depicted in Figs. 11 and 12, respectively. 

 

 

Fig. 10. Distance of individuals at successive iteration  
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Fig. 11. Average spread of variable features  

 

 

Fig. 12. Ranks of variable features 

 

 Fig. 13. G.A based multi-objective optimization model Accuracy metric 
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5 Conclusion  

Proposed, in the present paper, is a genetic algorithm-based multi-objective model to predict software 

bugs. Multi-objective optimization has proven to be successful in various fields of machine learning.  

Its usage for predicting software bugs is one of its numerous applications as software is very essential 

to the functionality of any operational hardware. 

The adoption of PCA for feature selection proved conclusively that the six significant software fea-

tures are sufficiently able to map the entire wide range data obtained from the publicly available NASA 

dataset for software validity check.  Thus, reducing computational time and memory usage led to the 

normalization of data. Comparison of the statistical technique (t-test) generated results with the compu-

tational PCA on dataset returned closely related range of values.   

 Furthermore, the results generated by the Genetic Algorithm-based multi-objective optimization 

software bugs predictor have greatly depicted the accuracy of this model. Individual response charac-

teristics are obtained at optimal sets of levels for the processed features derived from the statistical re-

sponse surface techniques. The results obtained are within 95% to 97% prediction accuracy of the re-

spective response intervals acquired through the optimized model completed in a MATLAB-based soft-

ware environment. This also indicates that the optimal values are within the specified range of processed 

variables for accurate software bugs prediction.  

Future research on the prediction of software bugs will explore the practical application of Differen-

tial Evolution (DE), ensemble machine learning algorithms and other computational meta-heuristics al-

gorithms for software predictions. 
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