
 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266  

Vol. 8 Issue 1 (2024)  

ISSN 2603-316X (Online) 
Published:   2024-06-28  

 

 Page | 21  

 

Development of programmable logic controller algorithms for 

database communication 

Stefan Stefanov1, Anton Naumov2 

1 – Technical University of Varna, Department of Production Automation, 9010, 1 Studentska Street, Varna, Bulgaria 

2 – Technical University of Varna, Department of Production Automation, 9010, 1 Studentska Street, Varna, Bulgaria 

 

Corresponding author contact: slstefanov@abv.bg 

Abstract. The present paper provides a brief overview of the possibilities which can arise when 

outsourcing some of the more advanced functionalities usually developed for computers to a pro-

grammable logic controller. This approach is still being examined to fulfil its aim of improved 

communication capabilities and provision of effective tools for advanced intelligent control sys-

tems. The paper, further, sets out to give an example of one such algorithm which is built upon the 

MySQL protocol. 

Keywords: algorithm, communication, protocol, controller, MySQL 

1 Introduction 

Having access to much greater resources in the contemporary state of automation leads to develop-

ing a large number of control systems constrained by the higher computing power concentrated in the 
devices which indirectly take part in the control of the industrial processes - computers. 

Traditionally, computers are considered a part of SCADA supervision systems due to the possibil-

ity to present large amounts of data in ways that are easy for the servicing staff to understand. The 

presence of such equipment on the spot also offers access to functionalities typically related to it like 
database operations, connection to the outside world through the means of the Internet, etc. The ability 

to extend the scope of the system and simplify the operation (which directly leads to a much shorter 

staff training time) is a perspective which few investors would fritter away considering the small fi-
nancial aggravation of the project. 

The main advantage of such systems is their ability to communicate with practically all the devices 

responsible for the proper control and monitoring of the complex industrial processes. This, of course, 
is not such an elementary task but it is achievable through the interpretation of the different communi-

cation protocols which each intelligent aperture uses. Some protocols are typically regarded as one-

sided as they are traditionally used by one side and then translated and transformed in a suitable way 

for the next partner. Such are the database access protocols placing too great a load on the computers 
as those are initially the storage for the database information. 

When using such structures, logic would lead one to the conclusion that the highest place in the hi-

erarchy would be assigned to the computer followed by the local logical device which serves to con-
trol and monitor the lowest in the hierarchy, namely actuators and sensors. This kind of control is not 

without its drawbacks, one of which is the task of timely information supply. The computer is in a way 

the first requirement for the system’s proper operation since it is the source of the information neces-

sary for bringing the industrial process under control.  Failure to communicate promptly the need for 
new data will inevitably result in the disruption of the working process which would not be able to 

continue its proper course. 

2 Reversing the hierarchy 

One possible solution to this task would be the reversal of the hierarchy which is proved possible 

given the advanced state of programmable logic controllers. This means that as far as database com-

munication is considered, it is possible to move the queries directly to the controller and skip the trans-
lation and transformation of data from the computer as long as the controller has the tools to decipher 

https://doi.org/10.29114/ajtuv.vol8.iss1.266


 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266  

Vol. 8 Issue 1 (2024)  

ISSN 2603-316X (Online) 
Published:   2024-06-28  

 

 Page | 22  

 

the database query answers. This task is not a particularly easy one to solve but overcoming it be-

comes achievable through the use of open-source software granting the developers the rights to use the 

necessary information in the future. 
An example of such software is MySQL. In its essence, MySQL is a multithreaded multiuser SQL 

system for database management, (Viswani, 2004). Similar to other SQL systems, MySQL is used for 

operations with relational databases which in the last few years have proven to be more reliable and 
easier to operate due to the large coherence of the stored data. In the wake of its successful presence in 

the market, new developments were prompted in dozens of languages, thus, enabling MySQL to be-

come accessible for a large number of computer applications, (Pajankar, 2020). This inclines to the 
establishment of a system in which the computer would be placed high in the hierarchy and would 

communicate the needed information to a controller through an open protocol, but still such a structure 

would not serve as a solution to the above-stated task of timely data supply. An additional shortcom-

ing is the dependency of the actuators on the database connection with an additional communication 
unit which might pose a problem and lead to the disruption of the entire work process. 

Using a controller to access a MySQL database, on the other side, is a problematic task due to the 

lack of freely distributed software to direct the implementation of the connection algorithm. It, then 
follows from here that if an access is to be provided, the entire algorithm with its predetermined set of 

instructions for connecting, sending, receiving, and decoding information from the database would be 

built from scratch in line with the MySQL protocol requirements. Such a task, undoubtedly, would 

take a lot of time and effort, and, therefore, it is first suggested to check whether an alternative ap-
proach is available, so that time, the most precious resource in the project, is not to be wasted away 

(Николов, 2013). 

Building a system with a structure in which the positions are exchanged in this way would have to 
be reasoned and strongly encouraged. Indeed, drawbacks are already noticeable in the concept – such 

an idea demands resources which might not be available. A huge advantage, though, would be the 

possibility to use the  results attained to further the advancement and re-use of the developed structure 
multiple times in other projects for as long as it is applicable. Since this, in its essence, is a gain for the 

contractor but neutral or even a loss for the investor, the emphasis should be shifted towards the other 

positive qualities of such a system. A good example is the independence from the computer as a con-

trol element, even though, in some respect, that role is retained – largely due to the greater availability 
of computing resources it is still the superior option for developing SCADA systems which in modern 

times are almost inseparable from industry management. Skipping over one of the communication 

units in the circuit will inevitably imply that the whole system will reach a higher work speed. Finally, 
such a structure leads to the solution of the foregoing task of timely data supply, as it would be unnec-

essary to communicate that need with the devices standing higher in the hierarchy. 

3 Developing the algorithm 

The requirements for implementing such a system are relatively reasonable – a programmable logic 

device, working under an open communication protocol, is required to send messages to the database 

server. The queries in question would have to meet a number of rules, set in place by the communica-
tion protocol, so they can be approved. This creates a demand for the capability to program the com-

plex rules, under which the operations are validated, as those would at a later stage be used to decode 

the computer-received response. Required, in addition, are improved levels of performance so that the 

algorithms for preliminary query preparation and decoding can run in real time and without noticeable 
delay. 

The requirements stated above do not pose a significant challenge for the larger part of modern 

technology. Many of the products available in the market especially those by some of the well-
established brands for programmable logic controllers already meet these requirements and can be 

used for executing the task at hand. However, in order for the data to be visually presented through the 

programming environment in a way that resembles the database and allows the programmer to navi-
gate intuitively through the messages received, the controller would have to be able to shape the in-

formation in a tabular view. That functionality is available by default in the Siemens controllers, (Ber-

ger, 2014). 

https://doi.org/10.29114/ajtuv.vol8.iss1.266


 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266  

Vol. 8 Issue 1 (2024)  

ISSN 2603-316X (Online) 
Published:   2024-06-28  

 

 Page | 23  

 

This leads to the next question – how would one implement such a complex algorithm with the 

tools available in the programmable logic controller programming software? The first step is selecting 

the right programming language, as each one comes with its advantages and disadvantages, which 

should be considered prior to its appropriate development. 

3.1 Ladder  

Ladder, more commonly abbreviated as LAD, is the most widespread and easy-to-understand pro-

gramming language in this field. It is a visual representation of the outdated relay-contactor techniques 
and can be used to simulate them, which leads to its main advantage – being easy to read and track. 

These qualities define it as the most suitable language for people with an extensive background in 

electrical engineering and the best language for detecting problems during runtime. This comes in pair 

with some drawbacks – as a result of the small amount of data contained in individual elements, com-
plex expressions can take up large space. Due to the very nature of the language itself, this means that 

in these cases the networks, which represent the expressions will grow unidirectionally and hinder the 

complete portrayal of the created structure. This characterizes LAD as a rather lengthy language which 
is rarely used for developing complex algorithms, as the large volume of networks tend to make the 

navigation through the program rather complicated. 

 

 

Fig. 1. Ladder network representing the function D = (A AND B) OR C. 

3.2 Sequential function chart 

A sequential function chart, more commonly abbreviated as SFC, represents a flowchart that uses 

the steps and transitions to bring about the desired results. The steps, similarly to the graphs, are the 

major functions and contain the actions that must be performed upon reaching them. Moving between 
steps demands a transition instruction which can be programmed to require some conditions to be met. 

Unlike traditional flowcharts, SFC can have multiple paths which is both an advantage and a disad-

vantage, as such functionality is its major selling point but at the same time does not always find use in 

traditional programmable logic controller applications. However, the language does allow the breaking 
down of the processes into smaller major steps which, in turn, makes troubleshooting much easier. 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266


 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266  

Vol. 8 Issue 1 (2024)  

ISSN 2603-316X (Online) 
Published:   2024-06-28  

 

 Page | 24  

 

 

Fig. 2. A comparison between a sequential function chart(left) and a flowchart(right) (Retrieved from 

https://realpars.com/plc-programming-languages/) 

3.3 Function block diagram 

Function block diagram, more commonly abbreviated as FBD, is one of the most popular pro-

gramming languages for programmable logic controllers, usually interchangeable with LAD. It is de-
fined by a significantly higher density compared to LAD in view of the availability of ready-made 

functional blocks – elements which serve to complete a single specific task which is normally either 

clearly described in the programming guide or manually provided by the manufacturer. This with-
drawal of information to an external source seems to indicate a more reduced need for a description 

inside the diagram itself, which is to explain why the FBD-based programs typically fit a lot more 

logical operations in a visually smaller part of the workspace. Alternatively, this allows for a much 

greater part of the program to be displayed. By using standard one-function blocks, it is easy to handle 
common, recurring tasks such as counters, timers, loops, etc, (Узунов, 2014). Tracking the program 

flow, however, is not always an easy task with the likely predisposition of the connections between the 

blocks to grow to incredible amounts and hinder the readability of the program even though it is pos-
sible to split those connections in two. It is precisely for this reason that the FBD is more often pre-

ferred by people with a high-level programming background who are well-accustomed to using ready-

made functions and following separate threads running concurrently. 
 

 

Fig. 3. Function block diagram representing the function D = (A AND B) OR C. 

3.4 Structured text 

Structured text, commonly abbreviated as ST, is a collective name for text-based programming 

languages for programming logical controllers. A common feature in these languages is that their use 

has high similarities with high-level programming although it is of the utmost importance during de-
velopment to remember the difference between the processing power of computers and that of the con-

trollers, so that resources are not exceeded. ST languages are usually based on PASCAL and allow 

access to all functionalities easily available in LAD and FBD in combination with others, ideally suit-

https://doi.org/10.29114/ajtuv.vol8.iss1.266


 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266  

Vol. 8 Issue 1 (2024)  

ISSN 2603-316X (Online) 
Published:   2024-06-28  

 

 Page | 25  

 

ed only in ST. This rich palette of possibilities while leading to smaller program sizes does not come 

without its drawbacks – finding a problem in the written code is hardly an easy task and spotting a 

logical mistake is time-consuming when compared to LAD. Accordingly, because of this, ST lan-
guages are more commonly used as a tool for developing function blocks and much less often as the 

main programming language. 

 

 

Fig. 4. Structured text representing the function D = (A AND B) OR C. 

Despite the advantages and disadvantages of the languages under discussion, each one is applicable 

for developing a complex communication protocol but it is the ST that is considered the most suitable 

one due to its similarity with high-level programming languages which brings it closer to the software 
applications that have already been developed. However, in high-level programming languages, there 

are different techniques which can also have a great effect on the outcome of the created algorithm. In 

order to choose the right program structure, it is necessary to define which particular element of the 

expected algorithm can cause the most harm to its proper execution. Typically, when dealing with 
communication, the most serious issue is its failure which can happen due to either partner experienc-

ing a performance problem or a long period of no data transmission leading to a disconnect. One way 

of circumventing this issue is by connecting and disconnecting the devices before and after each op-
eration, which is a technique that has proven effective over the years when working with single-

function equipment but in recent years due to the large number of obsolete operations is used occa-

sionally and within certain limits. 
Another issue which should be taken into account is that when working with a MySQL database 

while queries can be relatively short, the length of the answers is directly dependent on both the data-

base and the query design which can produce an answer with millions of symbols in length. If the 

connection breaks down for one reason or another, this will lead to a serious issue, as part of the in-
formation may be missing and in order to resume operation, the exact moment of disconnection must 

be identified in order for all the appropriate measures to be taken. It is this stopping at key points and 

making transitions only under specific circumstances that is part of the Finite-state machine computa-
tion model being defined by its high stability based on the limited number of executions in a single 

key point, (Wang, 2019). Additionally, it is also easy to analyse any newfound problems since through 

this model it is always possible to note the step of the algorithm that was accessed last – a detail which 
is usually perceived as a weakness for ST programming but here such a benefit remains unmatched. 

An example of the key features of the Finite-state machine model can be given in the Structured 

Text language: 

    IF (#Steps = #STEP_GREETING) THEN  //step entry point 
        #Receive_greeting := TRUE; 

        IF (#Receive_greeting.RCVD_LEN = 0) THEN 

            #Receive_greeting := FALSE; 
        ELSE 

            #Steps := #STEP_LOGIN; 

        END_IF; 

    END_IF; 
 

    IF (#Steps = #STEP_LOGIN) THEN  //step entry point 

        //Form login request message 
        …         

        #Steps := #STEP_CHALLENGE; 

    END_IF; 
While the example above is an incomplete part of an already developed and commissioned algo-

rithm, it serves to show just how the Finite-state machine operates (in this case an acceptor subtype) – 

the Steps variable is used as a pointer to where exactly the program flow should go (Keller, 2001). In 

the code above STEP_GREETING, STEP_LOGIN and STEP_CHALLENGE are constant quantities to 

https://doi.org/10.29114/ajtuv.vol8.iss1.266


 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266  

Vol. 8 Issue 1 (2024)  

ISSN 2603-316X (Online) 
Published:   2024-06-28  

 

 Page | 26  

 

ease readability and direct the algorithm to the right step; no other step can be executed with the entry 

points specifically checking the Steps variable ensuring that the program flows correctly. 

4 Algorithm description 

Having made the decision on how to implement a new communication protocol, securing the abso-

lute minimum required for the successful transmission of data between two devices takes priority. It 
can be reasonably concluded, therefore, that a connection between the two communicating sides 

should be established first to be followed by a two-way data transmission, and at the end of the work 

process, an intentional disconnection has to occur so that the resources can be freed up and used to 

facilitate the work with a different partner. This can be generalized within the functions Connect, 
Send, Receive and Disconnect, (Abbate, 2000). Each of these functions is to be carefully described 

according to the requirements of the chosen protocol. In the case of the MySQL protocol, hereto dis-

cussed, the data transmission functions do not present a real challenge due to the comprehensive de-
scription received along with each block of data that is extracted from the database. As for the Discon-

nect operation, it is made up of only a standard FIN packet according to the TCP/IP protocol require-

ments, which is acknowledged by the partner side with an ACK segment. This is practically a repeat 
of the two-way data transmission functions but much simpler and usually, part of ready-made func-

tions within the programming environments. 

 

Fig. 5. TCP connection termination procedure. 

This brings attention to the Connect function which for the MySQL protocol is the most complex 

one of the four. This is a consequence of the fact that this type of communication grants access to a 

large amount of data which may even be confidential. Because of this, connection privacy is of the 
highest priority, and it is mandatory to guarantee that the device, trying to access the database, truly 

has the full information needed to be granted entry and not just partial fragments which may suggest 

that this is, in fact, a malicious attack. 

For the protocol under study, the procedure must be followed as: 

─ Starting a communication according to the TCP protocol with the MySQL server 

─ Awaiting handshake signal 

─ Forming a request to be granted entry according to the protocol’s requirements 

─ Awaiting an access key 

https://doi.org/10.29114/ajtuv.vol8.iss1.266


 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266  

Vol. 8 Issue 1 (2024)  

ISSN 2603-316X (Online) 
Published:   2024-06-28  

 

 Page | 27  

 

─ Preparation of an answer containing the password for the chosen user and the access key in a secure 

form 

─ Awaiting authenticity confirmation 

The structure of the algorithm is an upgrade of the well-developed TCP communication and ex-
pands it with the only purpose of guaranteeing security and access control. The first step, starting a 

communication, is a feature of the well-known handshaking that is part of the TCP protocol and sub-

ject to the MySQL protocol version it can be either a three-way or a four-way handshake. The obvious 
difference is the number of messages that have to be transmitted between the two sides. Initiating 

communication through a TCP protocol is done by two-way requests using a SYN message followed 

by a two-way agreement using an ACK message. In total, that is 4 messages that both sides should 

exchange before it is confirmed that communication is, in fact, started and data transmission can 
begin. Since one side will always act as a client and the other one as a server, one of the SYN messag-

es will inevitably arrive at a seemingly random moment. This allows the existence of the three-way 

handshake, which means that after receiving the client’s request for starting a connection, the server 
can send a SYN-ACK message to save the need for a fourth message in the communication startup. It 

is important to note that a standard part of this procedure is communicating the sequence number tied 

to the connection and it must be incremented to ensure that there will not be a conflict in identifying 
partners on either side, (Cerf, 1983). 

Part of the upgrade, done by the MySQL protocol, consists of the presence of an automated greet-

ing done by the server once the handshake ends. This greeting is part of a separate handshaking proto-

col which is developed by MySQL AB and isn’t used in the same iteration in other similar products. 
The point of this improved handshake is to transmit the details tied to establishing successful commu-

nication with the database such as the version of the protocol in use, connection identification number, 

character set, etc. Before this greeting is transferred, the handshake protocol version is announced so 
that the client may know which message decoding protocol has to be used. 

After the client has received the necessary information to access the database, an entry request has 

to be formed and issued according to the requirements of the protocol in use. Semantically, this re-
quest serves as a confirmation that the client indeed has the tools to correctly decipher the server-

received messages but also provides the server with the necessary information for client recognition. 

Due to the nature of the introduction, it is possible to fabricate this information although providing 

false data can only lead to problems in the future therefore it is highly suggested the client introduction 
is done properly in a sensible and comprehensible manner. One of the mandatory fields is the name of 

the user by which the client wishes to be identified. If a given user does not exist in the database, 

communication is terminated as this serves as a proof that this particular client does not have the com-
plete data required to be granted the right of entry. 

Upon recognizing the username and confirming the login request, the server initiates a password 

request. In modern times, computers have large enough computing resources to be able to launch at-

tacks against different structures and in doing so, sidestep the password request. It is for this reason 
that in recent years a growing number of safety measures are being introduced to ensure that upon a 

simple observation of the exchanged messages, delicate information like passwords is not presented in 

plain text. While it seems obvious, even today thousands of public sites break this unofficial rule and 
are therefore not considered trustworthy. The MySQL protocol attempts to propose a solution to this 

problem by means of two steps – provision of an access key which serves as a challenge to generate 

the correct answer in a limited amount of time along with the additional hash functions for further pro-
tection. 

By definition, hash functions are one-way mathematical functions which serve to associate data to 

its hash value which is used as an index key of fixed length, (Knuth, 1973). Upon passing the exact 

same input, the hash result would always be the same which leads to the conclusion that if two inputs 
produce the same hash values then they ought to be identical. Theoretically, it is possible for the two 

different blocks of data to produce the same hash values. This is called a collision and is a leading 

topic in computer science, (Stapko, 2007). Generating a collision intentionally depends directly on the 
length of the generated hash function output through which recent functions with a higher level of 

security like SHA256 and SHA512 are being used. However, generating a collision attack requires 

time and even when large computing resources are available, a security breach may not always be pos-

https://doi.org/10.29114/ajtuv.vol8.iss1.266


 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266  

Vol. 8 Issue 1 (2024)  

ISSN 2603-316X (Online) 
Published:   2024-06-28  

 

 Page | 28  

 

sible if unique data is present, (Soltanian, 2016). Because of this, the MySQL protocol and many oth-

ers rely on the usage of a temporary access key which is part of the input data for the hash function. 

By means of a constantly changing input and a time control for generating the answer, the possibility 
for a malicious attack is minimized – if a correct answer is not received in time or an incorrect one is 

sent instead, it is determined that the client does not, in fact, have the information needed to be granted 

access to the database and the communication is terminated immediately. 
For the purposes of the MySQL protocol, a SHA1 hash function is being used. It is characterized 

by an output length of 20 bytes which are broken into 5 words of 4 bytes (32 bits). It is mandatory that 

the input is a multiple of 512 bits which can be broken down into 16 32-bit big-endian words which 
would be of the same length as those mentioned above. This means that in the case of larger messages 

hashing would be done in separate 512-bit chunks. The hash function itself consists of 80 looping 

steps, each 20 of which follow a different algorithm and have different constants. This leads to a com-

plete transformation of the original message and the obtained result cannot be traced back to the input 
unless the function is executed again. The function is irreversible which means that even though mes-

sages are coded in a much smaller volume relative to the modern SHA256 and SHA512, it is still nec-

essary for all the initial conditions to be known in order for the same result to obtained. 
The authorization algorithm consists of multiple hash functions to circumvent the security weak-

ness which SHA1 poses (Stevens et al., 2017) and by definition is: 

 𝑆𝐻𝐴1(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑) 𝑋𝑂𝑅 𝑆𝐻𝐴1(𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 〈𝑐𝑜𝑛𝑐𝑎𝑡〉 𝑆𝐻𝐴1(𝑆𝐻𝐴1(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑))) (1) 

Formula (1) shows that it is compulsory for both the password and the server-given access key 

(challenge) to be known. Some may notice that the two instances of the SHA1 hash function have dif-

ferent input data lengths, but this is not an issue as the hash output is of fixed length which means the 
logical operation XOR will always be performed bit by bit without any problems. The only challenge 

would be to ensure effective local implementation of the SHA1 algorithm in the logic device responsi-

ble for the communication itself. If the result obtained through formula (1) matches the result calculat-

ed by the server, then access is granted and database operation may begin. 

5 Conclusion 

Delegating more responsibilities to the device with lower computational power can in some cases 
have positive effects on the project as a whole instead of being a net negative. Removing the extra 

communication unit from the network leads to an increase in performance and stability, ensuring inde-

pendence between devices, and authorizing them to execute operations under fewer requirements. As a 
whole, the task of developing algorithms for managing the process that was originally placed in the 

now obsolete device is a laborious one and rarely can be justified for single applications. As a long-

term investment, however, and further development of the algorithm as a ready-made functionality in 

other projects is a common practice when undertaking an intelligent approach towards creating control 

systems and managing the most limited resource of all – time. 

Acknowledgments 

The research was conducted under the project PD4/21 named “Developing and researching algorithms for the 

extraction, processing and protection of data” within the academic activities inherent to TU-Varna and with the 

financial support from the state budget for the 2021 research project program. 

References 

Wang, J., & Tepfenhart, W. (2019). Formal Methods in Computer Science. CRC Press. 

https://doi.org/10.1201/9780429184185  

Keller, R. (2001). Classifiers, Acceptors, Transducers, and Sequencers. Retrieved from 

https://www.cs.hmc.edu/~keller/cs60book/12%20Finite-State%20Machines.pdf  

https://doi.org/10.29114/ajtuv.vol8.iss1.266
https://doi.org/10.1201/9780429184185
https://www.cs.hmc.edu/~keller/cs60book/12%20Finite-State%20Machines.pdf


 

 

https://doi.org/10.29114/ajtuv.vol8.iss1.266  

Vol. 8 Issue 1 (2024)  

ISSN 2603-316X (Online) 
Published:   2024-06-28  

 

 Page | 29  

 

Vaswani, V. (2004). MySQL™: The Complete Reference. McGraw Hill India. 

Pajankar, A. (2020). Learn SQL with MySQL. BPB Publications. Retrieved from 

https://www.perlego.com/book/1681500/learn-sql-with-mysql-pdf  (Original work published 

2020) 

Cerf, V. G., & Cain, E. (1983). The DoD internet architecture model. Computer Networks (1976), 

7(5), 307-318. https://doi.org/10.1016/0376-5075(83)90042-9  

Abbate, J. (2000). Inventing the Internet. MIT Press. 

Димитров, В., Николов, Н., & Александрова, М. (2013). Автоматизация на технологични 

процеси. ТУ Варна. 

Петров, П., & Узунов, В. (2014). Aрхитектура на системите с PLC SIMATIC S7. ТУ-Варна. 

ISBN 978-954-20-0659-6 

Stapko, T. (2007). Practical Embedded Security. Elsevier. https://doi.org/10.1016/B978-075068215-

2.50006-9  

Soltanian, M., Amiri, I., & Neeley, M. (2016). Theoretical and Experimental Methods for Defending 

Against DDoS Attacks. Syngress. 

Stevens, M., Bursztein, E., Karpman, P., Albertini, A., & Markov, Y. (2017). The First Collision for 

Full SHA-1. https://doi.org/10.1007/978-3-319-63688-7_19  

Knuth, D. (1973). The Art of Computer Programming, Vol. 3, Sorting and Searching. Addison-

Wesley. 

Berger, H. (2014). Automating with SIMATIC S7-1500. Publicis MCD Werbeagentur GmbH. 

 

Online sources 

https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html 

https://dev.mysql.com/doc/dev/mysql-

server/latest/page_protocol_connection_phase_packets_protocol_handshake_v10.html 

https://doi.org/10.29114/ajtuv.vol8.iss1.266
https://doi.org/10.1016/0376-5075(83)90042-9
https://doi.org/10.1016/B978-075068215-2.50006-9
https://doi.org/10.1016/B978-075068215-2.50006-9
https://doi.org/10.1007/978-3-319-63688-7_19
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/dev/mysql-server/latest/page_protocol_connection_phase_packets_protocol_handshake_v10.html
https://dev.mysql.com/doc/dev/mysql-server/latest/page_protocol_connection_phase_packets_protocol_handshake_v10.html

