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Abstract. The paper is dedicated to a missing chapter of the circuit theory, which is connected 
with the special theory of relativity. It is concerned with the direct current regimes in the linear 
electric circuits, which are moving with speeds smaller than the speed of light or close to it. In it a 
series of basic questions, connected with the relativistic forms of the fundamental laws for the elec-
tric circuits (Kirchhoff’s current law, Kirchhoff’s voltage law, Ohm’s law, Joule’s law, the energy 
conservation law), are observed. The relativistic forms of the basic quantities of the electric circuits 
(currents, voltages, powers) and the relativistic relations of the basic parameters of the circuits (re-
sistances, conductances, capacitances, inductances) are presented, too. These formulas are extracted 
step by step by the help of Maxwell-Hertz-Einstein system of basic equations of the electromagnetic 
field, which is applied to fast moving objects (linear electric circuits) with arbitrary velocities less 
than the speed of light or even close to it. The final results are illustrated by the help of some simple 
examples about fast moving linear electric circuits. Their analyses are presented step by step in or-
der to show the validity of the received relations. 

Keywords: relativistic circuit theory, special theory of relativity, relativistic laws for the electric 
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1 Introduction 

The creation of the Maxwell’s theory of the electromagnetic (EM) field had an enormous influence 
on the development of the modern physics (Maxwell, 1873). It was the main basis for the appearance 
of the Special Theory of Relativity (STR) of Albert Einstein (Einstein, 1905, 1908), (Feynmann, 
1964a), (Kittel, 1963), which reformed the modern views on the surrounding world. One of its main 
consequences was the relativistic correction of the Maxwell-Hertz set of equations of the EM field for 
moving media (Feynmann, 1964b), (Purcell, 1965), (Simoniy, 1964) and the result was the appearance 
of the Maxwell-Hertz-Einstein system of basic equations of the EM field. The creation of the Rotary 
Theory (RT) of the EM field brought new corrections in that set of equations by the help of the meth-
od of moments (Panov, 2015, 2017a, 2017b). At the same time Circuit Theory (CT), being a conse-
quence of the Maxwell’s EM theory and its complementary theory, is not very well exposed in relativ-
istic form, a fact which can be detected very easily in the technical literature, i.e. it is absent… The 
reason is connected maybe with the fact that there are some scientists, who claim directly that: …”The 
important consequences… (of STR) … are related to the sphere of physics, but not to electrical engi-
neering…”… (Simonyi, 1964, p. 725). But at the same time there is another group of scientists who 
pay attention in their monographs to some elements of the Relativistic Circuit Theory (RCT) (which 
can be called also Special Circuit Theory (SCT)) (Pauli, 1958), (Meerovich, 1966), (Polivanov, 1982), 
(Meerovich, 1987). During the last few years some additional researches on that topic were done, but 
there are no generalized results towards RCT... 

The main goal of that paper is to collect the existing information about the basic laws of the electric 
circuits in relativistic form (Kirchhoff’s current law, Kirchhoff’s voltage law, Ohm’s law, Joule’s law, 
the energy conservation law), the relativistic connections of the basic quantities of the circuits (cur-
rents, voltages, powers) and their basic parameters (resistances, conductances, capacitances, inductanc-
es), in order to set the basis for the analysis of direct current (DC) regimes in electric circuits, mounted 
in fast moving artificial objects (like satellites or space ships) with velocities less than the speed of light 
or close to it. Today the highest velocities reached by artificial cosmic objects are about 15 km/s and at 
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that speed the relativistic effects can be already detected… The basic problem in the research is connect-
ed with the fact that some of the elements of the explored circuits are orientated in parallel to the direc-
tion of movement, and some of them are transversely disposed, so the voltages and the currents in these 
moving elements can be accepted by a static observer in a different way compared with an observer, 
moving together with these circuits with the same speed. 

2 Analysis 
2.1 Basic laws of the fast moving DC linear electric circuits 

According to the relativity principle of STR in each inertial coordinate system the basic forms of 
the laws of physics must remain the same (Einstein, 1905), (Feynmann, 1964a), (Kittel, 1963). In that 
relation let us imagine a moving linear electric circuit with a uniform speed xv

r
 along the x-axis of a 

static Cartesian coordinate system S (Fig. 1(a)). And let us imagine a moving Cartesian coordinate 
system S’ with the same uniform speed xvv

rr = , in which the circuit is in static position and the direc-
tion of the x’-axis coincides with the x-axis of the static coordinate system S. 

The Maxwell’s set of equations in differential form for a static coordinating system S has the fol-
lowing form: 
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The Maxwell’s set of equations in differential form for any moving coordinate system S’ (in which 
the direction of the x’-axis coincides with the x-axis of the static coordinate system S) with a uniform 
speed v

r
 preserves its form (i.e. it is invariant): 
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Here, H
r

and 'H
r

 are the vectors of the magnetic field intensities, D
r

 and 'D
r

 are the vectors of the 

electric flux densities, E
r

 and 'E
r

 are the vectors of the electric field intensities, B
r

 and 'B
r

 are the vec-

tors of the magnetic flux densities, 'j
r

 and j
r

 are the current densities, 'ρ  and ρ  are the volume den-

sities of the electric charges in both coordinate systems 'S  and S, correspondingly. 
In more detailed form the first set of equations consists of 8 partial differential equations: 
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In more detailed form the second set of equations consists of 8 partial differential equations, too: 
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The components of the EM quantities of the EM field in the moving coordinate system S’, ex-
pressed by the components of the same quantities in the static coordinate system S according to STR, 
are as follows (Meerovich, 1966, 1987): 
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is the coefficient of relativity and c is the speed of light in vacuum, where cv0 ≤≤ . Therefore, these 
formulas express the Lorentz transformations of the components of the EM quantities. 

The same results may be presented by the transverse and the longitudinal components of the EM 
quantities according to the notations of Einstein-Laub as follows (Einstein, 1908): 
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If we substitute equation (40) into equation (37), having in mind that 0' =ρ , we can receive the 
following result: 
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If: 

                                                                      '
x

'
x '

.cond
' jj =                                                            (54) 

is a conduction current density, 
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is the convection current density, i.e. 
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If we accept the notations of Einstein and Laub (Einstein, 1908) for the transverse and the longitu-
dinal components of the current densities, the current densities from equations (37) – (39) and (53) – 
(57) can be notated as follows: 
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And if we take into account the transverse and the longitudinal cross-section areas '
.condS  and 
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S⊥ ) of the conductors of the circuits in the coordinate sys-

tems 'S  and S, then we can extract the relations of the flowing currents there: 
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Using the last two equations we can formulate the Kirchhoff’s current law in relativistic form. In 

the moving coordinate system 'S  it will look like: 
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The relativistic relations among the last six equations are as follows: 
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The last equation presents Kirchhoff’s current law in relativistic form. So, the algebraic sum of the 
conduction currents flowing through a node of an electric circuit in the coordinate system S or in the 
coordinate system S’ is always equal to zero. It is not difficult to present Kirchhoff’s current law in 
another form, in which the electromotive currents of the current sources (if there are such) are trans-
ferred on the right hand side of the equation and all the conduction currents, flowing through branches 
containing no current sources, are presented on the left hand side. 

Using a similar procedure we can extract the Kirchhoff’s voltage law in relativistic form, too. For 

that purpose if we substitute equation (35) into equation (27), having in mind that 0B'
y' = , we can 

receive the following result: 
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is a component of the electric field intensity causing conduction currents,  
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is the component of the electric field intensity, caused by the unipolar induction, then 
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If we apply the notations of Einstein and Laub (Einstein, 1908) for the transverse and the longitu-
dinal components of the electric field intensities, the components of the electric field intensities in 
equations (25) – (27) and (70) – (74) can be notated as follows: 
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And if we take into account the transverse and the longitudinal lengths of the elements in the cir-

cuits '
l  and l  ( '
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l , 

.condIIl , '
.cond⊥l  and 

.cond⊥l ) in the coordinate systems 'S  and S, where the 

components of the electric field intensities act upon, then we can extract the relations of the voltage 
drops there: 

                         IIIIIIIIIIII
'
II

'
II

'
II

'
II

'
II u.u...E..E.E.Eu

.cond.cond.cond.cond
γγγγ ====== llll           (78) 

                             
γ

γ
γ

γ ⊥
⊥

⊥⊥
⊥⊥⊥⊥⊥⊥⊥ ====== u

u.
.E

.E..E.Eu
.cond.cond.cond.cond

''''' l
lll               (79) 



 

 

DOI: 10.29114/ajtuv.vol2.iss1.66   

Vol 2 Issue 1 (2018)  

ISSN: 2603-316X (Online) 
Published:   2018-06-30  

 

 Page | 23  

 

Using the last two equations we can formulate the Kirchhoff’s voltage law in relativistic form. In 

the moving coordinate system 'S  it will look like: 

                                                                             0u
n

1k
k

=′∑
=

                                                            (80) 

or 

                                                                          0u
n

1k
.condk

=′∑
=

                                                         (81) 

or 

                                                              0uu
n

1k

n

1k
.cond.condII kk

=′+′∑ ∑
= =

⊥                                              (82) 

In the static coordinate system S it will look like: 
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The relativistic relations among the last six equations are as follows: 
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Here, .condu′  or .condu  is a voltage drop, which causes flowing of a conduction current, and 

                                                            .ind.cond uuu ⊥⊥⊥ +=                                                              (87) 

Except that .indu⊥  is a voltage drop caused by the unipolar induction, because of the relative move-

ment of the circuit in the coordinate system 'S  towards the static observer in the coordinate system S. 
Equation (86) presents Kirchhoff’s voltage law in relativistic form. So, the algebraic sum of the volt-
age drops in a contour of an electric circuit in the coordinate system S or in the coordinate system S’ is 
always equal to zero. It is not difficult to present Kirchhoff’s voltage law in another form, in which the 
electromotive forces of the voltage sources (if there are such) are transferred on the right hand side of 
the equation and all the voltage drops across the passive elements in the contour are presented on the 
left hand side. 

The correctness of equations (58) - (62) and (75) - (79) giving the relativistic relations of the cur-
rent densities, the currents, the electric field intensities and the voltage drops in both coordinate sys-
tems can be proved by Joule’s law in point form for a small longitudinal or transverse element of a 
conductor with a current: 
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where '
IIp , IIp , 'p⊥  and ⊥p  are the specific powers in small elements of the conductors of the ex-

plored circuit; '
IIP , IIP , 'P⊥  and ⊥P  are the powers, caused by the conduction currents; '

IIV , IIV , 'V⊥  

and ⊥V  are the volumes of the conductors in the coordinate systems 'S  and S. The relations among 
the powers are presented in (Pauli, 1958). 

2.2 Basic relations of the parameters of fast moving DC linear electric circuits 

If we use the Ohm’s law in point form, the relativistic relations among the conductivities of the 
conductors in the coordinate systems S and S’ can be extracted (Meerovich, 1966): 

                                      
.cond.cond.cond.cond.cond IIIIIIII

'
II

'
II

'
II

'
II E..j.E.E.j σγγσσ ====                    (90) 

                                      
.cond.cond.cond.cond.cond

E.jE..E.j ''''
⊥⊥⊥⊥⊥⊥⊥⊥ ==== σγσσ                         (91) 

where '
IIσ , IIσ , '

⊥σ  and ⊥σ  are the conductivities of the longitudinal and the transverse conductors 

of the explored circuits in the coordinate systems 'S  and S. From the last two equations the following 
relations occur: 

                                                                        II
'
II .σγσ =                                                                (92) 

                                                                        
γ

σσ ⊥
⊥ ='                                                                   (93) 

The corresponding relations of the resistivities of the conductors are as follows: 

                                                             
γ

ρ
σγσ

ρ II
II

R

II
'
II

'
R .

11 ===                                                  (94) 

                                                             
⊥⊥

===
⊥⊥

R'
'
R .

1 ργ
σ
γ

σ
ρ                                                     (95) 

Then, using the last two equations, the relations among the resistances and the coductances of the 

conductors of the explored circuits in the coordinate systems 'S  and S can be extracted: 

                                    
II

II
IIRIIR

'
II

'

'
II

'
R'

II G

1
R

S

.

S.

..

G

1

S

.
R IIIIII ======

⊥⊥⊥

lll ρ
γ

γρρ
                          (96) 

                                    
⊥

⊥
⊥⊥

⊥

⊥
⊥ ====== ⊥⊥⊥

G

1
R

S

.

S.

..

G

1

S

.
R

II

R

II

R
''

II

''
R' lll ρ

γ
ργρ

                          (97) 

Another important relations can be extracted for the capacitances ('IIC , IIC , 'C⊥ , ⊥C ) and the in-

ductances ('IIL , IIL , 'L⊥ , ⊥L ) of the reactive elements of the explored electric circuits in the coordi-

nate systems 'S  and S: 

                                     .invu.Cqu..Cu.Cq
.condII.cond.cond'

II
IIIICII

'
II

'
II

'
II

'
C

===== γ                        (98) 

                                     .invu.Cqu..Cu.Cq
.cond.cond.cond' C

''''
C

===== ⊥⊥⊥⊥⊥⊥ ⊥⊥
γ                       (99) 

                                                                          
γ
II'

II
C

C =                                                              (100) 

                                                                          
γ
⊥

⊥ = C
C'                                                               (101) 

                                      .invi.Li..Li.L
.condII.cond.cond'

II
IIIILII

'
II

'
II

'
II

'
L

==Ψ===Ψ γ                        (102) 

                                      .invi.Li..Li.L
.cond.cond.cond' L

''''
L

==Ψ===Ψ ⊥⊥⊥⊥⊥⊥ ⊥⊥
γ                          (103) 
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γ
II'

II
L

L =                                                               (104) 

                                                                           
γ
⊥

⊥ = L
L'                                                               (105) 

Here, '
C'

II
q , 

IICq , '
C'q

⊥
and 

⊥Cq  are the electric charges of the capacitors; '
L'

II
Ψ , 

IILΨ , '
L'

⊥
Ψ and 

⊥
ΨL  

are the magnetic flux linkages of the coils in the coordinate systems 'S  and S. 
The same results can be received if we examine the stored energy of a charged capacitor (

IIC'W , 

IICW , 
⊥ C'W , 

⊥CW ) and a coil with a current (
IIL'W , 

IILW , 
⊥ L'W , 

⊥LW ) in both coordinate systems. 
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( ) ( )
2

u.C
.

2

u..
C

2

u.q
.

2

u..q
W.

2

'u.'C

2

'u.'q
'W

2
LII

2
C

II

CC

CC
C

2
CIICC

C

II
II

IIII

IIII
II

IIIIII
II

γ
γ

γγ

γ
γ

=









==

=====

                (106) 
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                      (109) 

So, the relativistic relations, which were presented by equations (100), (101), (104) and (105) can be 
easily extracted from the last four equations. The relativistic relations of the powers in the coordinate 

systems 'S  and S are presented in (Pauli, 1958). 

2.3 Numeric examples 

Example 1: Given a DC electric circuit in a Cartesian coordinate system 'S  which is moving with a 
velocity 260000v = km/s towards a static Cartesian coordinate system S (Fig. 1). Here, the electro-

motive force of the voltage source in the coordinate system 'S  is V2e' =⊥  and the resistances of the 

resistors are Ω== ⊥ 1RR ''
II . All quantities and parameters in the coordinate system S’ are noted with a 

prime (Fig. 1(a)) and these in the coordinate system S are not (Fig. 1(b)). Find the quantities and the 
parameters in both coordinate systems. 
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O

y

x

z S

x’

y’

z’

O’

S’

xv
r

(b)(a)

⊥'e

⊥'i ⊥'i

⊥'u⊥'R

II'R

II'i

II'i

II'u

(a)

⊥e

⊥i ⊥i

⊥u⊥R

IIR

IIi

IIi

IIu

(a)

⊥′e'u ⊥eu

 

Fig. 1. A moving electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate system S. 

Solution: 

The coefficient of relativity in this case is: 2=γ . In the coordinate system 'S  the following results 
are valid: 

                              V1V1uuV2uuee '
II

''
e

'
e

''
.cond.cond'

.cond
'.cond

+=+===== ⊥⊥⊥
⊥⊥

 

(Kirchhoff’s voltage law for the loop of the circuit in Fig. 1(a)); 

                                                A1
11

V2

RR

e
iiii

''
II

'
'''

II
'
II

.cond
.cond.cond

=
Ω+Ω

=
+

====
⊥

⊥
⊥⊥  

(Kirchhoff’s current law for node (a) in Fig. 1(a)); 

                                                         W1A1.V1i.uP '
II

'
II

'
R .cond.cond'

II
===  

(Power of the horizontal resistor in Fig. 1(a)); 

                                                        W1A1.V1i.uP '''
R .cond.cond' === ⊥⊥

⊥
 

(Power of the vertical resistor in Fig. 1(a)). 
The balance of powers is as follows: 

                                          W2W1W1PPA1.V2i.eP '
R

'
R

'''
e ''

II.cond.cond' =+=+===
⊥⊥

⊥⊥ . 

In the coordinate system S the following results are valid: 

                                                           V1
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V2
u
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'
e
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'
.cond

.cond.cond
==== ⊥
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                                                                V5,0
2

V1u
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'
II

II
.cond
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                                                                V5,0
2

V1u
u

'
.cond

.cond
=== ⊥

⊥ γ
 

                                                     V1V5,0V5,0uuV1e
.cond.cond.cond II =+=+== ⊥⊥  

(Kirchhoff’s voltage law for the loop of the circuit in Fig. 1(b)); 

                                                             A5,0
2

A1i
i

'
II

II
.cond

.cond
===

γ
 

                                                             A5,0
2

A1i
i

'
.cond

.cond
=== ⊥

⊥ γ
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.cond.cond

iiII ⊥=  

(Kirchhoff’s current law for node (a) in Fig. 1(b)); 
                                                   W25,0A5,0.V5,0i.uP

.cond.condII IIIIR ===  

(Power of the horizontal resistor in Fig. 1(b)); 
                                                    W25,0A5,0.V5,0i.uP

.cond.condR === ⊥⊥⊥
 

(Power of the vertical resistor in Fig. 1(b)). 
The balance of powers is as follows: 
                                         W5,0W25,0W25,0PPA5,0.V1i.eP RRe II.cond.cond

=+=+===
⊥⊥ ⊥⊥  

The resistances of the resistors are:  

                                                         Ω== 1RR '
IIII ; Ω== ⊥⊥ 1RR ' . 

 
Example 2: Analyze the DC electric circuits presented in Fig. 2, which are similar to these in the 

previous Fig. 1, where the only difference is connected with the fact that the voltage source is disposed 

horizontally and its electromotive force is V2e'
II = . The resistances of the resistors are Ω== ⊥ 1RR ''

II  

and the velocity of the electric circuit towards the coordinate system S is 260000v = km/s. 

O

y

x

z S

x’

y’

z’

O’

S’

xv
r

(b)(a)

II'e

⊥'i ⊥'i

⊥'u⊥'R

II'R

II'i

II'i

II'u

(a)

IIe

⊥i ⊥i

⊥u⊥R

IIR

IIi

IIi

IIu

(a)

IIe'u ′ eIIu

 

Fig. 2. A moving electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate system S. 

Solution: 

The numeric results in the coordinate systems 'S  and S are the same as in the previous example. 

The coefficient of relativity in this case is: 2=γ . In the coordinate system 'S  the following results 
are valid: 

                              V1V1uuV2uuee '
II

''
e

'
e

'
II

'
II .cond.cond'

.condII
'
II.cond

+=+===== ⊥  

(Kirchhoff’s voltage law for the loop of the circuit in Fig. 2(a)); 

                                               A1
11

V2

RR

e
iiii

''
II

'
II'''

II
'
II

.cond
.cond.cond

=
Ω+Ω

=
+

====
⊥

⊥⊥  

(Kirchhoff’s current law for node (a) in Fig. 2(a)); 

                                                        W1A1.V1i.uP '
II

'
II

'
R .cond.cond'

II
===  

(Power of the horizontal resistor in Fig. 2(a)); 

                                                        W1A1.V1i.uP '''
R .cond.cond' === ⊥⊥

⊥
 

(Power of the vertical resistor in Fig. 2(a)). 
The balance of powers is as follows: 

                                         W2W1W1PPA1.V2i.eP '
R

'
R

'
II

'
II

'
e ''

II.cond.cond'
II

=+=+===
⊥

. 

In the coordinate system S the following results are valid: 
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                                                       V12/V2
u

ue

'
e

eII

'
.condII

.condII.cond
====

γ
 

                                                                 V5,0
2

V1u
u

'
II

II
.cond

.cond
===

γ
 

                                                                 V5,0
2

V1u
u

'
.cond

.cond
=== ⊥

⊥ γ
 

                                                      V1V5,0V5,0uuV1e
.cond.cond.cond IIII =+=+== ⊥  

(Kirchhoff’s voltage law for the loop of the circuit in Fig. 2(b)); 

                                                             A5,0
2

A1i
i

'
II

II
.cond

.cond
===

γ
 

                                                              A5,0
2

A1i
i

'
.cond

.cond
=== ⊥

⊥ γ
 

                                                                       
.cond.cond

iiII ⊥=  

(Kirchhoff’s current law for node (a) in Fig. 2(b)); 
                                                  W25,0A5,0.V5,0i.uP

.cond.condII IIIIR ===  

(Power of the horizontal resistor in Fig. 2(b)); 
                                                   W25,0A5,0.V5,0i.uP

.cond.condR === ⊥⊥⊥
 

(Power of the vertical resistor in Fig. 2(b)). 
The balance of powers is as follows: 

                                           W5,0W25,0W25,0PPA5,0.V1i.eP RRIIIIe II.cond.condII
=+=+===

⊥
 

The resistances of the resistors are:  

                                                        Ω== 1RR '
IIII ; Ω== ⊥⊥ 1RR ' . 

3 Conclusions 

As a result of the research the basic laws (Kirchhoff’s current law, Kirchhoff’s voltage law, Ohm’s 
law and Joule’s law) in relativistic form for fast moving electric circuits working in DC regimes were 
extracted. A group of relativistic relations for the quantities (conduction currents, voltages, powers, 
electric charges and magnetic flux linkages) and the parameters (resistances, conductances, capacitances, 
and inductances) of these circuits are presented, too. Some relations about the powers (the balance of 
powers as a consequence of the energy conservation law) are shown additionally in the numeric exam-
ples. 

Two numeric examples with fast moving linear electric circuits illustrate most of the extracted rela-
tions, too. All they can be very interesting to the electrical engineers who need to utilize STR in order 
to be able to determine the quantities and the parameters of fast moving circuits. 

In this way RCT is also with open way out. Here, the explorations cover a small part of RCT, con-
nected only with the DC regimes in linear electric circuits. The main task is to inspire the curiosity of 
the researchers about the fast moving electric circuits, because the relativistic effects exist around us 
today. In this way RCT can be very useful for prediction and explanation of new EM processes, phe-
nomena and effects in fast moving electric circuit… 
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